

University of Birmingham

Eva: Efficient Privacy-Preserving Proof of
Authenticity for Lossily Encoded Videos
Zhang, Chengru ; Yang, Xiao; Oswald, David; Ryan, Mark; Jovanovic, Philipp

License:
Creative Commons: Attribution (CC BY)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zhang, C, Yang, X, Oswald, D, Ryan, M & Jovanovic, P 2025, Eva: Efficient Privacy-Preserving Proof of
Authenticity for Lossily Encoded Videos. in 46th IEEE Symposium on Security and Privacy. IEEE Symposium on
Security and Privacy, IEEE, 46th IEEE Symposium on Security and Privacy, San Francisco, California, United
States, 12/05/25.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 22. Jul. 2025

https://research.birmingham.ac.uk/en/publications/00f78af5-1d34-4ec1-9646-7b8786bf381a

Eva: Efficient Privacy-Preserving Proof of Authenticity for Lossily Encoded Videos

Chengru Zhang∗, Xiao Yang†�, David Oswald†, Mark Ryan† and Philipp Jovanovic‡
∗University of Hong Kong †University of Birmingham ‡University College London

Abstract—With the increasing usage of fake videos in mis-
information campaigns, proving the provenance of an edited
video becomes critical, in particular, without revealing the
original footage. We formalize the notion and security model
of proofs of video authenticity and give the first crypto-
graphic video authentication protocol Eva, which supports
lossy codecs and arbitrary edits and is proven secure under
well-established cryptographic assumptions. Compared to pre-
vious cryptographic methods for image authentication, Eva is
not only capable of handling significantly larger amounts of
data originating from the complex lossy video encoding but also
achieves linear prover time, constant RAM usage, and constant
proof size with respect to video size. These improvements
have optimal theoretic complexity and are enabled by our
two new theoretical advancements of integrating lookup argu-
ments with folding-based incrementally verifiable computation
(IVC) and compressing IVC proof efficiently, which may be
of independent interest. For our implementation of Eva, we
then integrate them with the Nova folding scheme, which we
call Loua. As for concrete performance, we additionally utilize
various optimizations such as tailored circuit design and GPU
acceleration to make Eva highly practical: for a 2-minute HD
(1280× 720) video encoded in H.264 at 30 frames per second,
Eva generates a 448B proof in about 2.4 hours on consumer-
grade hardware at 2.6µs per pixel, surpassing state-of-the-art
cryptographic image authentication schemes by more than an
order of magnitude in terms of prover time and proof size.

1. Introduction

Disinformation campaigns frequently target visual mul-
timedia content, like images and videos, due to their popu-
larity and ease of distribution on social media platforms [1],
[2]. This trend has been exacerbated recently by the rapid
evolution of (generative) AI tools [3], [4], [5] that enable the
manipulation, generation, and dissemination of (fake) mul-
timedia content with a few clicks, presenting a significant
challenge to content moderation and fact-checking systems.

To combat maliciously generated multimedia content,
the two primary defenses include 1) the detection of fake
content, by humans [6], [7] or automated methods [8], [9],
and 2) the authentication of genuine content in which a
prover tries to convince a verifier of the content’s prove-
nance by providing some authentication information [10],
[11], [12]. Among authentication-based approaches, the

� Corresponding author. Email: x.yang.10@bham.ac.uk

Coalition for Content Provenance and Authenticity (C2PA)
standard [10] is an industry-wide effort to authenticate mul-
timedia content based on digital signatures.

The issue with these existing approaches is that they
either lack flexibility or raise security and privacy concerns.
In practice, raw multimedia content often needs to be edited
and encoded before publishing, but authentication-based
methods [11], [12], [13] typically allow only a limited set
of predefined transformations. While C2PA permits arbitrary
edits, it requires trusted editing software to sign the trans-
formations, introducing trust assumptions that are difficult
to meet, as an attacker may be able to extract the signing
key from the software and generate legitimate signatures for
any edits. In addition, C2PA’s metadata may expose sensitive
data that is not intended for disclosure, such as the thumbnail
of the original footage. Furthermore, many methods based
on detection [6], [7], [8], [9], [14] and authentication [11],
[12], [13] are prone to false positives or false negatives with
a non-negligible probability, an issue which may be even
worse in the presence of active attackers who can bypass
these mechanisms by exploiting their vulnerabilities [15],
[16]. Cryptographic solutions have been proposed for image
authentication [17], [18], [19], [20], [21], [22] tackling some
of these challenges. Still, the problem of video authenti-
cation remains largely unaddressed, as it is a significantly
harder task mainly due to the following two challenges:

• First, while lossless image encoding is common in
practice, video encoding is usually lossy. Consequently,
a video prover has to support lossy encoding that in-
volves significant complexities. Otherwise, the verifier
cannot recover the edited video that exactly matches
the prover’s claim because of the information loss
caused by encoding. In contrast, for lossless images,
the prover can simply prove the honesty of editing
without considering encoding, as the edited images can
be reconstructed accurately by the verifier.

• Second, videos extend images by adding a time di-
mension, increasing data sizes significantly. However,
authenticating large amounts of (edited) data, which is
usually achieved through zkSNARKs, imposes heavy
computational and memory costs on the prover. For
instance, it takes more than 1 day for the state-of-the-
art to prove 1800 HD lossless images (equivalent to a
1-minute HD video at 30 FPS), let alone lossy formats.

In this work, we introduce Eva, the first cryptographic
protocol for authentication of lossy-encoded videos. The
core protocol works as follows: 1) After recording a video

mailto:x.yang.10@bham.ac.uk

footage V , the recorder signs its hash H(V) and produces
signature σ. 2) After the prover edits V and encodes the
edited video V ′ to obtain ζ, a proof π is generated, showing
that σ is a valid signature on H(V) and that V is honestly
transformed into ζ. 3) When the verifier receives ζ and π,
it can verify the authenticity of ζ even without access to V .

To address the first challenge, a naive solution is to prove
that the edited video V ′ and the video Ṽ reconstructed from
the encoded bitstream ζ are “similar”, but it is difficult to
define a metric to quantify such similarity without introduc-
ing false positives or false negatives. Proving the honesty of
video encoding is thus inevitable to achieve negligible error
rates. However, expressing the highly complex encoding
process in zkSNARK circuits is intricate and costly. Our
key insight is that, even though the video is encoded in a
lossy format, certain intermediate data remains identical be-
tween encoding and decoding. Such data can be accurately
recovered by the verifier when decoding, and thus the prover
no longer needs to prove its validity. In fact, by feeding such
data as public inputs during proof verification, we can skip
proving the most complicated parts of the encoding process
(e.g., inter-frame prediction and entropy coding) and instead
focus on manageable components, thereby significantly re-
ducing the difficulty of circuit construction.

To address the second challenge, we exploit the highly
repetitive structure of videos and video processing algo-
rithms: they are usually based on macroblocks, i.e., small
and fixed-size blocks of pixels that can be processed in-
dependently. This allows us to leverage Incrementally Ver-
ifiable Computation (IVC) [23] constructed from folding
schemes [24], [25], [26], [27], [28] to reduce the circuit size
and memory requirements. In each IVC step, the prover only
needs to 1) generate an incoming proof of the honest editing
and encoding for a few macroblocks, and then 2) accumulate
it into the running proof. Finally, we also leverage lookup
arguments [29], [30], [31], [32] to avoid expensive bit
operations in the arithmetic circuits for video processing.

1.1. Contribution

Below we summarize the contributions of our work.
Eva: Efficient Video Authentication. As the core contribu-
tions of our work, we formalize the notion of proofs of video
authenticity along with its security model, and we propose
a secure and efficient construction, Eva. Eva is not only
the first cryptographic protocol for videos, but also the first
cryptographic scheme that takes lossy codecs into account.

Due to the complexity of video codecs and the large size
of videos, it is unrealistic to naively prove video authenticity
in-circuit. Eva makes it not only feasible but also efficient,
yielding linear prover time and constant prover RAM and
proof size in video size, and it is concretely performant even
on consumer-grade hardware.

• We avoid proving complex steps in the encoding pro-
cess by leveraging shared data between encoders and
decoders, hence simplifying our circuits for encoding.

• Taking advantage of the repetitive structure, videos are
proven block-wise with manageable costs per step us-

ing IVC. This makes Eva capable of handling arbitrar-
ily large video files with a constant memory footprint.

• To further reduce circuit size, we use both general tech-
niques, e.g., lookup arguments and non-deterministic
advice, and tailored approaches, such as efficient han-
dling of branches-based on dynamic conditions.

In addition, Eva naturally supports lossless encoding as
well, if we skip the encoding circuits and only prove editing.

Moreover, Eva is proven secure in our model under well-
established cryptographic assumptions, providing soundness
against attackers and zero-knowledge of the original video
except with negligible probability. By incorporating Eva into
the C2PA standard, we can not only improve the security of
C2PA by eliminating the trust assumptions on editing soft-
ware but also provide better privacy by hiding the original
footage from the verifier.
Paradigms for improving folding-based IVC. As theo-
retical contributions that might be of independent interest,
we present two general paradigms to enhance folding-based
IVC. The first paradigm integrates LogUp [33], an efficient
lookup argument [29], with arbitrary folding-based IVC.
The second paradigm constructs a decider that compresses
the proof of folding-based IVC into a constant-size and
zero-knowledge one via commit-and-prove SNARKs (CP-
SNARKs) [34], without introducing vector-to-polynomial
conversions or evaluation arguments as in [24], [35].

By applying our paradigms to a popular folding scheme
Nova [24], we introduce a variant Loua, which offers ef-
ficiency improvements over both the original Nova and its
design in the sonobe folding library [35]. With Loua at the
core of Eva, we achieve a significant reduction in the number
of constraints for video encoding and editing by substituting
expensive bitwise operations with cheap lookups.
Implementation and evaluation. We implement Eva and
Loua upon the sonobe library, with optimizations such as
GPU computing. We show compatibility with H.264 [36]
and employ a circuit-friendly hash function Griffin [37] and
Schnorr signature [38], but our modularized design allows
one to choose different schemes and support other lossy, or
lossless formats (by omitting the encoding circuit) for videos
or images and to achieve full compliance with C2PA.

Even with larger data size and an additional encoding
process, Eva yields > 10× improvements in prover time and
proof size over state-of-the-art constructions for images. For
a 2-minute HD H.264 video at 30 frames per second, Eva
generates a proof in ∼ 2.4 hours on a consumer-grade desk-
top. During IVC proof generation, the RAM usage is kept
at a constant ∼ 10 GB, and IVC proof compression requires
50 ∼ 60 GB of RAM. The final proofs have a constant size
of 448 bytes and can be verified by resource-constrained
devices like mobile phones or blockchain validators.

1.2. Related Work

By regarding videos as a generalization of images, we
summarize the comparison of Eva to cryptographic pro-
tocols for image authentication in Table 1. For details of
performance evaluation, we refer the reader to Section 6.

TABLE 1: Comparison between Eva and cryptographic protocols for image authentication.a

Format Compression Editing Operations Prover time Prover RAM Proof size Max dimensionsb

O(P 3 logP) O(1) 128 × 128

(< 18676 µs/px) (2.67 KB) < ∞
O(P logP) O(1) 3840 × 2160

(∼ 16 µs/px) (223 B) < ∞
O(P logP) O(logP) 1280 × 720

(> 355 µs/px (∼10 KB) < ∞
O(P) O(log2 N) 3840 × 2160

(∼ 167 µs/px) (∼10 KB) < ∞
O(P logP) O(log2 P) 6632 × 4976

(∼ 95 µs/px) (∼100 KB) < ∞
O(P log(P/T)) O(T) 6000 × 4000

(∼ 62 µs/px) (∼10 KB) < ∞
Eva Lossy (H.264) O(P) O(1) 1280 × 720 × 3600

(this work) Lossless (∼ 2.6 µs/px) (448 B) ∞

PhotoProof [17] Image Lossless Arbitrary O(P)

VIR [18] Image Lossless Masking O(P)

ZK-IMG [19] Image Lossless Arbitrary O(P)

VIMz [20] Image Lossless Arbitrary O(N)

VerITAS [21] Image Lossless Arbitrary O(P)

TilesProof [22] Image Lossless Arbitrary O(P/T)

Video Arbitrary O(1)

a Asymptotic complexity is measured w.r.t. the number of pixels P = MNL and the number of tiles T (required by [22]), where M is the height, N is
the width, and L is the time. Inside the parentheses is the concrete performance evaluated on our machine when possible. If the source code is unavailable,
we quote the original authors’ results and indicate the estimated results on our machine using > and <.

b Each cell displays the empirical (upper value) and theoretical (lower value) maximum dimensions. ∞ refers to unlimited dimensions, while < ∞ means
that unlimited dimensions are unsupported (due to bounded RAM).

PhotoProof [17] is a pioneering work in this direction
that uses Proof-Carrying Data [39] to offer authenticity of
edited images. Due to the high computational cost of prover,
it only supports tiny images. In [18], Ko et al. propose VIR,
which utilizes CP-SNARKs [34] to generate constant-size
proofs of redaction on images (masking secret parts with
black tiles). VIR significantly reduces the prover time while
supporting much larger images. Built upon halo2 [40], a
more efficient proof system, ZK-IMG [19] also has faster
prover than PhotoProof while maintaining support for ar-
bitrary editing operations. More recent schemes include
VIMz [20], VerITAS [21], and TilesProof [22]. We note that
these works share several common ideas with us, e.g., VIMz
also employs folding schemes to reduce prover RAM costs,
and VerITAS as well utilizes lookup arguments to improve
prover time. Our work integrates these general techniques
with video processing algorithms, and also introduces cus-
tomized IVC, tailored circuit design, and dedicated opti-
mizations to maximize the efficiency of Eva. Consequently,
compared to all other protocols, Eva achieves optimal time
and space complexity and delivers the best concrete prover
and verifier performance. Further, all previous works are
limited to lossless images, while our work supports lossy
video codecs, tackling a much greater challenge.

1.3. Overview of Eva

We provide an overview of Eva with a motivating exam-
ple and explain a video’s life cycle in our scheme. Consider
an on-site whistleblower Alice who wants to record and pub-
lish a video to expose illegal activities. Before publishing the
video, Alice wishes to blurs her face for privacy concerns.
At the same time, she also aims to convince the viewers
that blurring is the only edit that she has made, and that
this operation is done on an authentic footage.

Eva can prove the video’s provenance while preserving
Alice’s privacy. This is done by performing the steps below.
An illustrated version can be found in Figure 1.

Setup. At the beginning of Eva, device manufacturers gen-
erate keys for a signature scheme and embed them into
the hardware root-of-trust of recording devices. Here, we
assume that the manufacturers are able to obtain certificates
(e.g., from C2PA) for their keys. They also produce param-
eters for proving and verifying the authenticity of videos.
Record and sign. With such a recording device, Alice
now captures a video (raw footage), after which the device
creates a signature on the footage (along with metadata such
as timestamp, location, etc.) under the embedded signing
key. The signature ensures that the footage is authentic, or
more specifically, is recorded by a C2PA-certified device.
Edit and prove. Alice then edits the footage and blurs her
face. The video processing software usually encodes the
edited video and outputs a compressed video stream with
much smaller size, which is thus more suitable for publish-
ing. After that, Alice generates a succinct zero-knowledge
proof through Eva, showing that the final video stream is a
blurred-then-encoded version of an authentic video signed
by a certified recording device. She can now upload the
video stream as well as the proof to her website, together
with a claim that she only performed the blurring operation.
Verify. Using the verification algorithm of Eva, a visitor of
Alice’s website can examine the video stream’s provenance
by checking the proof against the video and the claimed
edits. If the proof holds, then the visitor is convinced that
the video is a blurred version of an authentic footage, which
is taken by a certified device at a specific time and location.

2. Preliminaries

Notations. In this paper, y := F (x) denotes the output of
a deterministic algorithm F on input x. For a randomized
algorithm F , we write y ← F (x), or y := F (x; r) when
it is supplied with external randomness r. With security
parameter λ, a negligible function in λ is denoted by ε(λ).

Vectors and matrices are denoted by boldface italic
lowercase and uppercase letters, respectively. x[i, j] is the

is the signature of under

after

becomes after

becomes

Recorder Encoding Software Verifier

Prover

Editing Software

Figure 1: Overview of the Eva protocol. The recorder produces a raw footage and signs it with its embedded signing key.
The footage is then edited and encoded into a video stream. The prover generates a proof attesting to the authenticity of
the video. The verifier can check the proof of authenticity against the video stream.

subvector of x from index i to j, and X[i, j; k, l] is the
submatrix of X from row i to j and column k to l, inclusive.

We consider a half-pairing cycle of elliptic curve groups
(𝔾, 𝔾̂,𝔾T),ℍ, where 𝔾 and ℍ form a 2-cycle, and (𝔾, 𝔾̂,
𝔾T) is a pairing-friendly group. In this cycle, 𝔽q, the base
field of 𝔾, is also the scalar field of ℍ; and 𝔽p, the scalar
field of 𝔾, is also the base field of ℍ.

Algorithms are written in pseudocode. “assert cond”
denotes the operation that returns 0 when the condition
cond is not satisfied and does nothing otherwise. Its in-
circuit counterpart, “enforce x = y”, adds a constraint for
enforcing equality between x and y to the constraint system.
Cryptographic Primitives. We rely on collision-resistant
hash functions H, ρ, and ϱ, an EUF-CMA secure signature
scheme Sig = (Sig.K,Sig.S,Sig.V), and a binding and
hiding commitment scheme CM = (CM.K,CM.C,CM.V).

Here, we consider ρ as a random oracle in the random
oracle model. Further, we define ϱ(x; r) = ρ(x || r) as a
hiding hash function. The signing key and verification key in
Sig are denoted by sk and vk, respectively. The commitment
key in CM is denoted by ck. For simplicity, we omit the
randomness in ϱ and CM from the notation.

We assume familiarity with the notion of zk-
SNARKs. A zero-knowledge commit-and-prove SNARK
(CP-SNARK) [34], [41] ZKCP = (ZKCP.K,ZKCP.P,
ZKCP.V) for relation R is a zkSNARK for the commit-and-
prove relation Rcp

(
(x, c), ((υi)

ℓ−1
i=0 ,ω)

)
, which holds iff.

R
(
x, ((υi)

ℓ−1
i=0 ,ω)

)
= 1 ∧

∧
i∈[0,ℓ−1] CM.V(ck, ci,υi) = 1,

i.e., the statements x and the witnesses ((υi)
ℓ−1
i=0 ,ω) satisfy

R, and each ci is a commitment to a part of witnesses υi.
For a vector of queries α = (αi)

µ−1
i=0 and a lookup table

τ = (τj)
ν−1
j=0 , a lookup argument [29], [30], [31], [32] is

a zkSNARK for the lookup relation Rlookup(τ ,α), which
holds iff. {αi}µ−1

i=0 ⊆ {τj}
ν−1
j=0 .

A non-interactive folding scheme [24] NIFS = (NIFS.G,
NIFS.K,NIFS.P,NIFS.V) folds two instances for relation R
into a single instance such that the correctness of the folded
instance implies that of the original ones.

Incrementally verifiable computation [23] IVC =
(IVC.G, IVC.K, IVC.P, IVC.V) allows one to verify the re-
peated execution of a function F , dubbed step function.

Specifically, IVC.P can generate a proof πi that the current
state zi is the result of i invocations of F starting from an
initial state z0, given the proof πi−1 attesting to zi−1.

3. Proofs of Video Authenticity

We formalize proofs of video authenticity, a category of
video authentication protocols that are provably secure. We
begin by describing the data types and operations involved,
followed by the algorithm definition and security properties.

3.1. Data Types and Operations

Video. There are two forms of video data: the raw video V
and the video stream ζ. A raw video is for being displayed
on a screen or edited by video processing software. It is
composed of a series of frames ordered by time. Each frame
is a still image described as a 2D matrix of pixels. It is
common to use the YCbCr color space in video processing,
where a pixel is represented by a luma component Y and
two chroma components Cb,Cr, each with 8 bits.

Moreover, in video processing, a frame is usually parti-
tioned into macroblocks of size 16 × 16, which contains
16 × 16 bytes for Y and 8 × 8 bytes for both Cb and
Cr, due to subsampling. Formally, we define a macroblock
as X := (XY,XCb,XCr) ∈ B, where B is the set of
all possible macroblocks, i.e., B := ℤ16×16

28 × ℤ8×8
28 ×

ℤ8×8
28 . In consequence, for a video with L frames, each

of which has M rows and N columns, we write V :=
(Xi)

M/16×N/16×L−1
i=0 ∈ BM/16×N/16×L.

Due to the large size, a raw video is compressed into a
sequence of bits ζ, or formally, a video stream, when being
transmitted over the network or stored in a file to reduce
communication and storage costs.
Encoding and Decoding. In video codecs, a raw video V
is converted to a video stream ζ by the encoder, whereas the
decoder reconstructs a video Ṽ from a video stream ζ. The
codec is lossless if the decoder can reconstruct the original
video exactly, i.e., V = Ṽ , and lossy if some information
is discarded, exchanging quality for a smaller video stream.

Figure 2 gives the general workflow of macroblock-
based video codecs [36], [42], [43]. We can observe that, on

input an original macroblock X , the block-wise encoder E
generates a prediction macroblock P with some reference
information ref and computes the residual macroblock R
by subtracting P from X . Then R is converted to trans-
formed coefficients Y and then quantized coefficients Z via
transform and quantization. Finally, Z is compressed into
ζ by entropy encoding. The decoder D essentially “inverts”
the encoder’s process. By applying E to all macroblocks
of a video V , we can obtain the encoded video stream
ζ := E(V , paramE). The decoded video can be computed as
V ′ := D(ζ, paramE). Further, we assume that one can ex-
tract intermediate data from E and D, such as the prediction
macroblock P and quantized coefficients Z.
Metadata. Metadata meta is a set of information associated
with the video, such as the recording device ID, the location
and time of recording. We assume that meta is immutable.
Editing. A block-wise editing operation ∆ is defined as
∆ : B × {0, 1}∗ → B, which takes a macroblock X and
some editing parameters param∆ ∈ {0, 1}∗ as input, edits
X , and outputs the edited macroblock X ′.

3.2. Algorithm and Security Definitions

A proof of video authenticity involves four parties: the
trusted party, the recorder, the prover, and the verifier.

The trusted party (e.g., manufacturer) runs the key gen-
eration algorithms KΣ and KΠ, where KΣ generates signing
keys for the recorders, and KΠ produces necessary parame-
ters for proof generation and verification. The signing keys
are then securely provisioned to the recorders and are safely
protected using mechanisms such as secure enclaves.

The recorder (e.g., camcorder) records a video, generates
the metadata, and runs the recording algorithm R, which
signs the video and the metadata under the signing key.

The prover (e.g., content creator) edits and encodes the
original video, publishes the processed video, and runs the
proof generation algorithm P to get a proof of authenticity.

The verifier (e.g., website visitor) checks if the proof is
valid w.r.t. the video using the verification algorithm V .

Now we formally define the algorithms discussed above
in a proof of video authenticity.

Definition 1 (Proof of Video Authenticity). A proof of video
authenticity is defined as VA = (KΣ,KΠ,R,P,V):

• KΣ(1
λ)→ (skΣ, vkΣ)

KΠ(1
λ)→ (pkΠ, vkΠ)

Both key generation algorithms KΣ and KΠ take as in-
put security parameter 1λ. KΣ outputs a pair of secret
signing key skΣ and public signature verification key
vkΣ, and KΠ outputs a pair of public proving key pkΠ
and public proof verification key vkΠ. KΠ also returns
a secret trapdoor td that is omitted from the notation
for simplicity but is used in security definitions.

• R(skΣ,V ,meta)→ σ
The recording algorithm R takes as input signing key
skΣ, video V and its metadata meta, and outputs a
signature σ on V and meta.

• P(pkΠ, vkΣ,V ,meta, param, σ)→ (ζ, π)

The proof generation algorithm P takes as input prov-
ing key pkΠ, signature verification key vkΣ, video
V , metadata meta, editing and encoding parameters
param = (param∆, paramE), and signature σ. It out-
puts a video stream ζ and a proof π that attests to 1)
the honesty of the editing and encoding process from
V to ζ under param, and 2) the validity of σ on (V ,
meta) under vkΣ.

• V(vkΠ, vkΣ, ζ,meta, param, π) =: b
The verification algorithm V takes as input proof ver-
ification key vkΠ, signature verification key vkΣ, pro-
cessed video stream ζ and its metadata meta′, editing
and encoding parameters param, and proof π, and
outputs a bit b indicating if the proof is valid for ζ,
meta and vkΣ.

Now we formalize the security of VA. Consider the
relation RVA(x,w) for the authenticity of a video, where
x = (ζ,meta, param, vkΣ),w = (σ,V). For a signature
scheme Sig, an editing operation ∆, and an encoder E ,
RVA (x,w) = 1 iff.

Sig.V(vkΣ, σ, (V ,meta)) = 1∧ζ = E(∆(V , param∆), paramE)

The security of VA is defined below, which can be
regarded as the security of zkSNARKs for RVA.
COMPLETENESS. Completeness holds if for every video V ,
metadata meta, and editing and encoding parameters param,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ)← KΠ(1

λ)
σ ← R(skΣ,V ,meta)
(ζ, π)← P(pkΠ, vkΣ,V ,meta, param, σ)
RVA((ζ,meta, param, vkΣ), (σ,V)) = 1 :

V(vkΠ, vkΣ, ζ,meta, param, π) = 1

 = 1

KNOWLEDGE SOUNDNESS. Knowledge soundness holds if
for every p.p.t. adversary A, there is a p.p.t. extractor Ext
such that for all input randomness r,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
(ζ,meta, param, π) := A(pkΠ, vkΠ, vkΣ; r)
(σ,V) := Ext(pkΠ, vkΠ, vkΣ, td; r)
V(vkΠ, vkΣ, ζ,meta, param, π) = 1 :

RVA((ζ,meta, param, vkΣ), (σ,V)) = 0

 ≤ ε(λ)
ZERO-KNOWLEDGE. Optionally, VA may satisfy the zero-
knowledge property, which holds if there exists a simulator
Sim such that for every p.p.t. distinguisher A,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
((ζ,meta, param, vkΣ), (σ,V))← A(vkΣ, pkΠ, vkΠ)
(·, π)← P(pkΠ, vkΣ,V ,meta, param, σ) :

A(π) = 1



≈ Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
((ζ,meta, param, vkΣ), (σ,V))← A(vkΣ, pkΠ, vkΠ)
π ← Sim(td, pkΠ, vkΣ,meta, param, ζ) :

A(π) = 1



Figure 2: Block diagram of a macroblock-based video codec.

SUCCINCTNESS. Optionally, VA may produce succinct
proofs, if for every video V of dimension M × N × L,
the proof π for V is of size |π| = poly(λ) polylog(MNL).

4. Improving Folding-Based IVC

What makes Eva an efficient and succinct zero-
knowledge proof of video authenticity is a folding-based
IVC scheme that supports efficient lookups and proof com-
pression. These capabilities are enabled by our general,
scheme-agnostic paradigms for folding-based IVC. The first
paradigm incorporates LogUp [33], an efficient lookup ar-
gument, into any folding-based IVC scheme. The second
paradigm constructs a decider based on CP-SNARKs that
compresses IVC proofs into a fully succinct and zero-
knowledge proof of constant size. A concrete instantiation
Loua is obtained by applying them to Nova [24]-based IVC.

4.1. Paradigm 1: IVC with Lookup Arguments

We first give the high-level idea behind our paradigm for
supporting lookup arguments in folding-based IVC, where
we consider an IVC scheme IVC constructed from a folding
scheme NIFS. In each step of IVC, we first collect q, the
queries to the lookup table, from the execution of the step
function F . Then, in addition to folding the NIFS instances,
we also fold Q, the commitment to q. Finally, we create an
augmented step circuit Faug for F that additionally verifies
the lookup relation for q against the exact Q, thereby linking
the folding scheme with the lookup argument.
Existing folding-based IVC. To elaborate on the intuition
above, we quickly review the construction of folding-based
IVC. Given a folding (accumulation) scheme NIFS, the
compilers proposed in [24], [44] are able to convert it to
an IVC scheme IVC. Both folding-to-IVC compilers are
conceptually similar: an IVC for step function F internally
utilizes NIFS for an augmented step circuit Faug, which
1) performs the current execution of F , and 2) verifies the
previous folding proof. Let w and x be the witness and
statement (public I/O) of the circuit Faug . WLOG, we

adopt the notations in [24] and assume w is contained in
the folding witness 𝕎, and x is in the folding instance 𝕌.

Specifically, for a step circuit F , the corresponding
augmented step circuit Faug is associated with an incoming
instance-witness pair (𝕦,𝕨) for NIFS. There is also a run-
ning instance-witness pair (𝕌,𝕎), which absorbs the incom-
ing one in each step of recursive computation. For instance,
in the i-th step, (𝕦i,𝕨i) represents the execution of Faug in
the (i − 1)-th step, while (𝕌i,𝕎i) is the accumulation of
all previous (𝕦j ,𝕨j) for j ∈ [0, i − 2] and thus represents
all previous i− 1 invocations of Faug.

Given (𝕦i,𝕨i) and (𝕌i,𝕎i), the prover IVC.P folds
both pairs, producing a running instance-witness pair (𝕌i+1,
𝕎i+1) that represents all previous i invocations of Faug.
Next, IVC.P performs the i-th execution of Faug, whose
corresponding (𝕦i+1,𝕨i+1) is stored for the (i+1)-th step.

Here, the i-th execution of Faug checks 1) F(zi; auxi) =
zi+1, i.e., zi, the state of F in step i, is correctly updated,
2) NIFS.V(vk,𝕌i,𝕦i, T) = 𝕌i+1, i.e., 𝕌i+1 is the correct
folding of 𝕌i,𝕦i, and 3) 𝕦i.x = ϱ(𝕌i, i,z0, zi), where 𝕦i.x
is the statement of Faug in the (i−1)-th step. Further, Faug

outputs h := ϱ(𝕌i+1, i+1, z0, zi+1), which will be included
in 𝕦i+1.x, i.e., the statement of Faug in the i-th step.
Support lookup in folding-based IVC. Now we discuss
how to equip any folding-based IVC with lookup arguments.
In our paradigm, we consider τ = (τj)

ν−1
j=0 , a read-only

lookup table with ν entries. We assume during the execution
of F , µ queries α = (αi)

µ−1
i=0 are made to τ . For the j-th

table entry τj , we count oj , the number of τj’s occurrences
in the query vector α. The folding witness 𝕎 now contains
an extra term q = ((αi)

µ−1
i=0 , (oj)

ν−1
j=0), and its commitment

Q = CM.C(ck, q) is included in the folding instance 𝕌.
Having defined 𝕎 and 𝕌, we build NIFSlookup, a lookup-

friendly version of NIFS, whose prover and verifier addition-
ally computes the random linear combination of 𝕌1.Q and
𝕌2.Q. The prover also folds 𝕎1.q and 𝕎2.q analogously.
The construction of NIFSlookup is illustrated in Algorithm 1.
Note that q does not affect the computation of error terms
and proofs in NIFS, because it is just a syntactic sugar
that denotes a special type of witness w to the relation R,
and can be regarded as a plain witness outside the context

of lookup arguments. In fact, if 𝕌 already contains the
commitment to w (e.g., in [24], [25], [26], [27], [28]), our
approach can be viewed as the separation of q from w.

Algorithm 1: NIFSlookup

1 Fn NIFSlookup.G(1λ):
2 return pp← NIFS.G(1λ)
3 Fn NIFSlookup.K(pp, R):
4 return (pk, vk) := NIFS.K(pp, R)
5 Fn NIFSlookup.P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2)):
6 (𝕌,𝕎, T)← NIFS.P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2))
7 r := ρ(tr) ▷ tr is the transcript between P and V
8 𝕌.Q := 𝕌1.Q+ r · 𝕌2.Q
9 𝕎.q := 𝕎1.q + r ·𝕎2.q

10 return (𝕌,𝕎, T)

11 Fn NIFSlookup.V(vk,𝕌1,𝕌2, T):
12 𝕌 := NIFS.V(vk,𝕌1,𝕌2, T)
13 r := ρ(tr) ▷ tr is the transcript between P and V
14 𝕌.Q := 𝕌1.Q+ r · 𝕌2.Q
15 return 𝕌

Next, we construct IVClookup from NIFSlookup. Recall
that IVC for F internally utilizes NIFS for an augmented
step circuit Faug. This is also the case in our construction.
Inspired by gnark [45], which incorporates LogUp into
Groth16 [46] and Plonk [47], our augmented step circuit
F lookup (Circuit 2) additionally checks the set inclusion
identity of LogUp [33, Lemma 5] in-circuit.

Suppose F makes queries α = (αi)
µ−1
i=0 to a lookup

table with entries τ = (τj)
ν−1
j=0 . As per LogUp, {αi}µ−1

i=0 ⊆
{τj}ν−1

j=0 (where α and τ are both viewed as sets) if and
only if there is a list of multiplicities o = (oj)

ν−1
j=0 such that

the below identity for set inclusion holds:

µ−1∑
i=0

1

X − αi
=

ν−1∑
j=0

oj
X − τj

.

By Schwartz-Zippel Lemma, we can check this polyno-
mial identity by evaluating it at a random point X = c.
Here, c can be the random message from the verifier after
receiving the commitment Q to q = ((αi)

µ−1
i=0 , (oj)

ν−1
j=0)

from the prover. Thanks to Fiat-Shamir transform [48],
we can eliminate the interaction and compute c := ρ(Q)
instead. Consequently, the F lookup circuit needs to enforce
1)

∑µ−1
i=0

1
c−αi

=
∑ν−1

j=0
oj

c−τj
, i.e., the set inclusion identity

holds, and 2) c = ρ(Q), i.e., c is honestly computed.
Check 1) can be done by collecting the queries (αi)

µ−1
i=0

from the execution of F circuit and asking the prover to
feed (oj)

ν−1
j=0 and c as hints to F lookup.

However, check 2) is more tricky. A naive yet problem-
atic way is to let the prover feed Q as a hint and check if
its digest is c. Nevertheless, this approach fails to guarantee
soundness. Note that an honest Q should be the commitment
to the queries made by F in the i-th step of IVC, which
should thus be a part of the incoming instance 𝕦i+1, but the

circuit is unable to verify this. In fact, 𝕦i+1 will be calculated
after the current execution of F lookup and is unknown to
F lookup during its execution.

To address this issue, we mark c as a public output and
defer the check to the next step. More specifically, 𝕦i+1.x,
the statement of Faug in the i-th step, now contains ϱ(𝕌i+1,
i+ 1, z0, zi+1) and c. With 𝕦i+1.Q and 𝕦i+1.x, F lookup in
the (i + 1)-th step can now check the honesty of c from
the i-th step by comparing it with ρ(𝕦i+1.Q). Analogously,
F lookup in the i-th step becomes responsible for ensuring c
from the (i− 1)-th step is derived from 𝕦i.Q.

Circuit 2: F lookup(i, zi,𝕌i,𝕦i, T , auxi)
Witness: i,zi,𝕌i, 𝕦i, T , auxi
Statement: h, c
Constant: (τj)ν−1

j=0

1 zi+1 := F(zi; auxi) ▷ Let (αi)
µ−1
i=0 be queries made by F

2 Check 𝕦i:
enforce 𝕦i.x = (ϱ(𝕌i, i,z0,zi), ρ(𝕦i.Q))

3 𝕌i+1 := NIFS.V(vk,𝕌i, 𝕦i, T)
4 Check lookup queries:

o← Hint(α)
c← Hint(α,o)
enforce

∑µ−1
i=0

1

c−αi
=

∑ν−1
j=0

oj

c−τj

5 h := ϱ((i = 0) ? 𝕌⊥ : 𝕌i+1, i+ 1,z0,zi+1)
6 return h, c

With F lookup as the augmented step circuit, we construct
IVClookup (Algorithm 3) accordingly, also by leveraging the
folding-to-IVC compiler described above.

Formally, the prover takes as input the previous proof
πi = ((𝕌i,𝕎i), (𝕦i,𝕨i)), folds (𝕌i,𝕎i) into (𝕦i,𝕨i) to
obtain (𝕌i+1,𝕎i+1), and runs the F lookup circuit. When
asked for hint o w.r.t. α, the prover computes oj as the
number of occurrences of table entry τj in α for all j ∈ [0,
ν−1]. When asked for hint c w.r.t. α,o, the prover computes
Q ← CM.C(ck, q) and c := ρ(Q). Finally, the incoming
instance-witness pair (𝕦i+1,𝕨i+1) corresponding to the i-
th execution of Faug is constructed, and the updated proof
πi+1 = ((𝕌i+1,𝕎i+1), (𝕦i+1,𝕨i+1)) is returned.

The verification of an IVC proof πi = ((𝕌i,𝕎i), (𝕦i,
𝕨i)) simply checks the digest h and challenge c in 𝕦i.x
and ensures that 𝕨i,𝕎i satisfy 𝕦i,𝕌i, respectively.

By applying this paradigm to Nova and relaxed
R1CS [24], we obtain a folding scheme LouaFS and an IVC
LouaIVC. We additionally utilize CycleFold [49] to improve
circuit efficiency. Specifically, a CycleFold circuit F cf is
constructed on ℍ to handle group operations in LouaFS.V
in a native way, while the augmented step circuit on 𝔾 only
needs to perform field operations in LouaFS.V . As a trade-
off, Faug becomes responsible for enforcing the correct
folding of CycleFold instances 𝕌cf

i ,𝕦cfi using LouaFS.V .
Since 𝕌cf

i ,𝕦cfi are over ℍ, the group operations in NIFS.V
can be handled natively by Faug over 𝔾.
Comparison with other IVC with lookup. Several folding-
based IVC schemes [26], [27], [50], [51] also support
lookup arguments. In HyperNova [26], the authors build

Algorithm 3: IVClookup

1 Fn IVClookup.G(1λ):
2 return pp← NIFSlookup.G(1λ)
3 Fn IVClookup.K(pp,F):
4 Build F lookup for F
5 return (pk, vk) := NIFSlookup.K(pp,F lookup)

6 Fn IVClookup.P(pk, (i,z0,zi), auxi, πi):
7 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i)) := πi

8 (𝕌i+1,𝕎i+1, T) := NIFSlookup.P(pk, (𝕌i,𝕎i), (𝕦i,𝕨i))
9 (h, c)← F lookup(i,zi,𝕌i, 𝕦i, T , auxi)

10 Construct 𝕦i+1,𝕨i+1 from the execution of F lookup

11 return πi+1 := ((𝕌i+1,𝕎i+1), (𝕦i+1,𝕨i+1))

12 Fn IVClookup.V(vk, (i,z0,zi), πi):
13 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i)) := πi

14 assert 𝕦i.x = (ϱ(𝕌i, i, z0,zi), ρ(𝕦i.Q))
15 assert 𝕨i is a satisfying incoming witness to 𝕦i
16 assert 𝕎i is a satisfying running witness to 𝕌i

17 return 1

nlookup upon the sum-check protocol. Similar to our
paradigm, Protostar [27] and its subsequent work [50]
utilizes LogUp as well. Very recently, NeutronNova [51]
integrates Lasso [32] with folding.

For the use cases where the lookup table size ν is
large, [26], [27], [50] provide more efficient solutions. How-
ever, our paradigm is optimal if the number of queries µ
is much larger than ν, which is the case for our video
encoding and editing circuits. In fact, the complexity of our
paradigm is on par with existing schemes, but it further
has minimal constant factor. For instance, our prover only
needs to additionally commit to µ + 2ν values, which is
also the case for Protostar, while NeutronNova requires
3µ+3ν. Moreover, we only add one additional commitment
Q to folding instances when integrating lookup arguments,
whereas Protostar and NeutronNova introduce two.

As a general and flexible approach, our paradigm sup-
ports any folding schemes and constraint systems. In com-
parison, the technique in NeutronNova leads to a dedicated
folding scheme, and it is unclear how Protostar’s solution
can be combined with folding schemes that are not based
on special-sound protocols [27].

4.2. Paradigm 2: Commit-and-Prove Decider

We introduce a decider Decider that compresses the final
IVC proof πk into a succinct zero-knowledge proof ϖ via
a zkSNARK for the relation RIVC. Given statement x = (k,
z0, zk) and witness w = πk, RIVC(x,w) = 1 if and only
if IVC.V(vk, (k, z0, zk), πk) = 1.
Existing deciders. There are two existing methods for
building Decider upon zkSNARKs [24], [35].

In Nova [24], the authors construct a dedicated Poly-
nomial IOP [52] for relaxed R1CS and compile it into a
zkSNARK for RIVC using a polynomial commitment scheme
(PCS). Two choices of the PCS are presented: a Pedersen-

based PCS with Bulletproofs [53] as the IPA, and a two-
tiered PCS (e.g., Dory-PC [54]) with Dory-IPA [54]. For
Faug with n constraints, the former achieves O(log n) proof
size and O(n) verification time, while the latter makes both
proof size and verification time logarithmic in n.

sonobe [35] instead expresses RIVC as a circuit and
prove its satisfiability with Groth16 [46], yielding constant
proof size and verifier time. Nevertheless, sonobe’s decider
only supports compressing proofs that use KZG commit-
ment [55], where IVC.P in each step needs to interpolate the
polynomial from the input vector, resulting in an O(n log n)
prover due to number-theoretic transforms (NTT).
Our construction. Our goal is to design a decider that
improves both approaches. Specifically, it should produce
constant-size proofs that can be verified in constant time
w.r.t. n, while keeping the time of IVC.P linear in n. To this
end, we also express RIVC as a circuit FDecider and prove its
satisfiability, similar to sonobe. However, recall that RIVC

checks a portion of 𝕎k (e.g., q in NIFSlookup) against the
commitments in 𝕌k (e.g., Q). We neither perform this check
directly in-circuit (which is costly due to non-native elliptic
curve operations), nor convert 𝕎k to a polynomial and
verify its evaluation against the polynomial commitments
in 𝕌k (which requires interpolation during the conversion).

Our approach leverages CP-SNARKs [34], which allow
one to demonstrate that a subset of the witnesses in a
SNARK indeed corresponds to a commitment, without run-
ning CM.V in-circuit. Thus, the constraints for commitment
verification are completely eliminated, whereas vector-to-
polynomial conversion is also unnecessary because CP-
SNARKs do not require polynomial commitments. Con-
cretely, we can use Pedersen commitment [56] as CM by
choosing LegoGro16 [34] as ZKCP, which establishes a
bridge between Groth16 and Pedersen commitments. As a
result, the prover time in each iteration of incremental proof
generation is linear, and both the final compressed proof size
and the verifier time are constant.

In addition, we adopt the trick in [24], [35] to further
save computation in FDecider, where Decider.P is required
to run NIFS.P once more to absorb (𝕦k,𝕨k) into (𝕌k,
𝕎k). Consequently, FDecider only needs to check the output
(𝕌k+1,𝕎k+1) instead of both inputs.

We present the general decider algorithm Decider in Al-
gorithm 4. As discussed above, Decider.P first runs NIFS.P
to fold (𝕦k,𝕨k) into (𝕌k,𝕎k), and then generates a proof
ϖ that FDecider is satisfiable and that the commitments in
𝕌k+1 are valid with ZKCP.P . Decider.V folds 𝕦k into 𝕌k

as well, checks the public inputs in 𝕦k.x, and verifies the
proof ϖ and the commitments in 𝕌k+1 using ZKCP.V .

It is worth noting that, due to Groth16, Decider.P has
O(n′ log n′) complexity, where n′ is the number of con-
straints in FDecider and is linear in n. But we stress that it is
a one-time cost at the end of multiple steps of IVC.P , and
it thus can be relatively cheap in practice.

Loua’s decider LouaDecider can be constructed with
LouaFS and LegoGro16, where the associated circuit
FDecider needs to check the primary instance-witness pair
(𝕌k+1,𝕎k+1) and the CycleFold instance-witness pair

Algorithm 4: Decider
1 Fn Decider.K(1λ, (ck,FDecider)):
2 return (pk, vk)← ZKCP.K(1λ, ck,FDecider)

3 Fn Decider.P((pk, pkΦ), (k, z0,zk), πk):
4 Parse ((𝕌k,𝕎k), (𝕦k,𝕨k)) := πk

5 (𝕌k+1,𝕎k+1, T) := NIFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))
6 c := (commitments in 𝕌k+1),

x := (other components of 𝕌k+1)
7 υ := (committed values in 𝕎k+1),

ω := (other components of 𝕎k+1)
8 ϖ ← ZKCP.P(pk,x, c,υ,ω)
9 return (ϖ,𝕌k, 𝕦k, T)

10 Fn Decider.V((vk, vkΦ), (k, z0,zk), (ϖ,𝕌k, 𝕦k, T)):
11 𝕌k+1 := NIFS.V(vkΦ,𝕌k, 𝕦k, T)
12 assert 𝕦k.x = (ϱ(𝕌k, k,z0,zk), ρ(𝕦k.Q))
13 c := (commitments in 𝕌k+1),

x := (other components of 𝕌k+1)
14 return ZKCP.V(vk,x, c, ϖ)

(𝕌cf
k ,𝕎cf

k). Since 𝕌cf
k and 𝕎cf

k are over the secondary curve
ℍ, the commitment verification becomes native operations
for circuits over 𝔾. However, the satisfiability check Acfv ◦
Bcfv ≡ u · Ccfv + e (mod q) requires non-native field
operations. We utilize tricks that eliminate in-circuit modulo
operations, thereby reducing the cost of this check by 16x
compared with the approach that naively utilizes [57].

5. The Eva Protocol

In this section, we introduce the construction of Eva, our
proof of video authenticity based on IVC. In Section 5.1,
we elaborate on the construction of our IVC step circuit
FEva. Then, in Section 5.2, we build upon FEva the full
construction of Eva and discuss its security.

5.1. Building the Step Circuit

Recall that in a proof of video authenticity, P aims to
convince V that the processed video stream ζ is honestly
edited and encoded from some original video V whose
signature σ is valid with respect to the public key vkΣ. Due
to the nature of video processing algorithms, we can view
the editing and encoding operation as a sequence of sub-
procedures on each macroblock of the video. Thus, we first
construct editing and encoding gadgets (small circuits that
perform some specific operations) for a single macroblock.
Then, we discuss how to combine both gadgets into FEva.
Finally, we complete FEva by adding the checks for the
validity of signature σ.
Editing gadget. On input a macroblock X , the editing
gadget F∆ transforms X according to the editing param-
eter param∆ and returns the edited macroblock X ′. Here,
F∆ can be the in-circuit representation of arbitrary editing
operation ∆. As examples, we construct several editing
gadgets in Appendix A.2, which are for color manipulations

(grayscale conversion, brightness adjustment, color inver-
sion), spatial operations (masking, cropping), and temporal
operations (cutting).
Encoding gadget. Naively, we can construct the encoding
gadget FE by translating the encoder algorithm E to an
arithmetic circuit. However, this would require a prohibitive
number of constraints, because E involves complex opera-
tions such as motion estimation, entropy coding, etc., and
the encoding of a macroblock may further depend on other
macroblocks in the current or neighboring frame.

To address these challenges, we make extensive use of
verifier’s knowledge. Although video codecs are generally
lossy, the decoder can still accurately extract from ζ some
information that appears in the encoding process as well. In
fact, the prediction macroblock P decoded by D is identical
to the original prediction macroblock computed by E , which
is also the case for the quantized coefficients Z.

Thus, we save the prover’s cost by treating P and Z
as public inputs, which can be recovered by V . Now, to
prove the honest encoding of a macroblock X with encoding
parameters paramE , FE no longer runs the entire E . Instead,
FE only has to enforce the honest execution of differing,
transform, and quantization, while it becomes unnecessary
to prove prediction and entropy coding. This process is
illustrated in Gadget 5. Here, the gadget FDiff for residual
macroblock computation simply returns R := X−P , while
details of FTrans and FQuant are elaborated in Appendix A.1.

Gadget 5: FE(X,P , paramE)

1 R := FDiff(X,P) ▷ Compute residual macroblock
2 Y := FTrans(R) ▷ Compute transformed coefficients
3 Z ← FQuant(Y , paramE) ▷ Compute quantized coefficients
4 return Z

Proof of Editing and Encoding. Now we integrate F∆ and
FE into FEva. Since both gadgets extensively use bitwise
operations, we fill the lookup table τ with 28 entries in
ℤ28 to maximize the efficiency. Then, for a macroblock X ,
FEva runs F∆ on X to obtain the edited macroblock X ′

and invokes FE on X ′ to get the quantized coefficients Z.
We further extend FEva to handle b macroblocks

(Xj)
b−1
j=0 in a batch, where each Xj is associated with

public inputs P j and Zj . With a reasonably large b, we
can amortize the constraints for NIFS.V in the augmented
circuit Faug, thereby enabling a more efficient IVC prover.

Nevertheless, the naive combination of F∆ and FE is
suboptimal. Recall that in IVC, the circuit Faug computes
ϱ(𝕌i, ·) and ϱ(𝕌i+1, ·), where 𝕌i.x and 𝕌i+1.x contain all
the public inputs to the step circuit, which are (P j)

b−1
j=0 and

(Zj)
b−1
j=0 in our case. Thus, the circuit needs to hash these

data twice, which becomes expensive when b is large.
In fact, it is possible to avoid treating (P j)

b−1
j=0 and

(Zj)
b−1
j=0 as public inputs while enjoying the shared infor-

mation between encoder and decoder. Instead, we only treat
them as witnesses, and the public input is now their digest
ℏ. More specifically, in the i-th step of IVC, we absorb
(P bi+j)

b−1
j=0 and (Zbi+j)

b−1
j=0 into ℏi via H, thereby obtaining

the next state ℏi+1. In this way, the prover only needs to
compute the digest of P and Z once per step in IVC.
Proof of Valid Signature. Due to the hash-and-sign
paradigm, the signature σ is actually for the digest of V
and meta. By regarding the digest computation of V as an
iterative invocation of H on each macroblock in the video,
we can extend FEva by hashing the original macroblock
X as well. On the other hand, the hash of meta and the
execution of Sig.V are deferred to the end of IVC, as we
will see in Section 5.2.

Now, the i-th state of IVC zi not only contains the digest
ℏi of prediction macroblocks and quantized coefficients, but
it also records hi, the hash of macroblocks in the original
video. In each step of FEva, the digest hi+1 is derived by
absorbing the incoming macroblocks (Xbi+j)

b−1
j=0 into hi.

Furthermore, to increase parallelism, we compute the
digests hi+1 and ℏi+1 in two steps: 1) calculate the par-
tial digests h′bi+j := H(Xbi+j) and ℏ′bi+j := H(P bi+j ,
Zbi+j , parambi+j) for all j ∈ [0, b − 1], and 2) derive the
final digests hi+1 and ℏi+1 by hashing the partial digests
(h′bi+j)

b−1
j=0 and (ℏ′bi+j)

b−1
j=0.

The final construction of FEva is given in Circuit 6.

Circuit 6: FEva

Witness: zi, (Xbi+j)
b−1
j=0, (parambi+j)

b−1
j=0

1 (hi, ℏi) := zi

2 for j ∈ [0, b− 1] do
3 X ′

bi+j ← F∆(Xbi+j , param
∆
bi+j)

4 P bi+j ← Hint(X ′
bi+j)

5 Zbi+j ← FE(X ′
bi+j ,P bi+j , param

E
bi+j)

6 h′
bi+j := H(Xbi+j)

7 ℏ′
bi+j := H(P bi+j ,Zbi+j , parambi+j)

8 if ∆ = ∆remove then
9 ℏ′

bi+j := paramremove
bi+j ? paramremove

bi+j : ℏ′
bi+j

10 hi+1 := H(hi, (h
′
bi+j)

b−1
j=0)

11 ℏi+1 := H(ℏi, (ℏ′
bi+j)

b−1
j=0)

12 if ∆ = ∆remove then
13 ℏi+1 := (

∧
j∈[0,b−1] param

remove
bi+j) ? ℏi : ℏi+1

14 return zi+1 := (hi+1, ℏi+1)

In addition to the points discussed above, we take ex-
tra care to handle the possible removal of macroblocks
due to the cropping or cutting operations (F∆remove in Ap-
pendix A.2). For a removed macroblock X ′, FE and sub-
sequent operations should not be performed, since X ′ is no
longer encoded by E .

This introduces different control flows depending on a
dynamic parameter paramremove, resulting in a non-uniform
circuit that is not directly supported by our IVC. A common
technique to avoid this non-uniformity is to run all possible
control flows, and then select among the results based on the
dynamic branching condition: 1) Perform FE and H to de-
rive ℏ′, as if X ′ is not removed. We can use dummy values
for X ′, P , Z, and paramE if they do not exist. 2) Compute
ℏ′ without P , Z, and paramE , i.e.,, ℏ′ := H(paramremove).
We further get rid of the hash and set ℏ′ := paramremove, as

the parameter only has a single bit. Later, we select between
1) and 2) based on the branching condition paramremove.

Nevertheless, this approach is still deficient. Recall that
ℏ is a public input computed by both P and V . Thus, for
a very large original footage V , even the cropped (or cut)
video ζ is very small, V still needs to compute the hash of
dummy values for the non-existent P and Z. In fact, V’s
costs are the same as if nothing is removed.

To save verification cost, one may consider running all
control flows in-circuit when computing ℏi+1, i.e., comput-
ing H(ℏi, S) for all S ∈ 2(ℏ

′
bi+j)

b−1
j=0 , where 2(ℏ

′
bi+j)

b−1
j=0 is

the power set of (ℏ′bi+j)
b−1
j=0, and then the correct result can

be selected. It is straightforward to see the downside of this
approach: it significantly increases the prover’s complexity.

We take a hybrid approach by reducing the number of
branches to 2, depending on if all macroblocks in a batch of
size b are discarded. If this is the case, the circuit selects the
previous digest ℏi as the next digest ℏi+1. Otherwise, the
circuit selects H(ℏi, (ℏ′bi+j)

b−1
j=0) as ℏi+1. As a result, P only

needs to additionally handle 3 constraints while making it
unnecessary for V to hash all dummy values. In fact, what
V computes now is the hash of P and Z for a cropped (or
cut) video whose size is padded to a multiple of the batch
size b, which is pretty close to the actual size of ζ.

5.2. Final Protocol

Having built an IVC scheme based on our variant of
Nova with support for lookup arguments in Section 4 and
the IVC step circuit in Section 5.1, we now present Eva, a
succinct, efficient, and secure proof of video authenticity.

In KΠ, the trusted party instantiates (pkΠ, vkΠ) with the
proving and verification keys for the IVC scheme and the
corresponding decider, and in KΣ, (skΣ, vkΣ) is obtained
by invoking Sig.K, where Sig is instantiated with Schnorr
signature [38]. Then, given the signing key skΣ, the recorder
R computes the signature σ on the video V and its metadata
meta as σ ← Sig.S(skΣ,H(V ,meta)).

Next, we dive into the details of our prover P and
verifier V . P aims to convince V of the satisfiability of
FEva. To this end, P first instantiates the lookup table τ
with 28 entries {0, . . . , 255}. Then P prepares the inputs
to FEva by transforming V into V ′ via ∆, and using E
to encode V ′, during which the quantized coefficients and
prediction macroblocks are extracted. Next, P incrementally
proves the satisfiability of FEva using our Loua-based IVC.
After k = (M/16 × N/16 × L)/b steps, the final IVC
state becomes zk = (hk, ℏk), where hk is the digest of
(Xi)

bk−1
i=0 , and ℏk is the digest of (P i)

bk−1
i=0 , (Zi)

bk−1
i=0 , and

(parami)
bk−1
i=0 . Finally, P compresses the IVC proof with a

decider based on ZKCP and returns the compressed zero-
knowledge proof as well as the video stream ζ. These data
are sent to V , together with the metadata meta and editing
and encoding parameters param.

As mentioned in Section 5.1, it is still left to compute
H(hk,meta) and run Sig.V on the digest. Since Decider.V
takes the final state as public inputs, we can give V the hash

hk and ask V to handle the rest of verification. However,
this approach is suboptimal because of the weak security
guarantee: hk leaks information about the original video V ,
leading to compromise of the zero-knowledge property.

To achieve full zero-knowledge, we exploit the flexibility
of the decider circuit FDecider and hide hk from V . More
specifically, we 1) verify σ on H(hk,meta) under vkΣ in
FDecider, and 2) move the computations related to 𝕦k.x in
Decider.V to FDecider, as hk is required to derive the first
component of 𝕦k.x, i.e., ϱ(𝕌k, k, z0, zk).

In our adapted decider circuit FDeciderEva , the statement
𝕌′

k and 𝕦′k now no longer include x. Instead, the prover
provides hk and xk as witnesses, and the circuit recon-
structs 𝕌k by merging 𝕌′

k with xk, and 𝕦k by merging
𝕦′k with (ϱ(𝕌k, k, z0, (hk, ℏk)), ϱ(𝕌cf

k , k), ρ(𝕦k.Q)). Then,
the circuit computes 𝕌𝔽

k+1 using the field-only operation
NIFS.V𝔽, and finally, checks 𝕎k+1 against 𝕌𝔽

k+1. The final
construction of FDeciderEva is given in Circuit 7.

Circuit 7: FDeciderEva

Witness: hk, σ,xk,𝕎k+1,𝕌cf
k ,𝕎cf

k

Statement: vkΣ,meta, k,z0, ℏk, r, 𝕦′k,𝕌′
k, T

Constant: CSaug = (A,B,C),CScf = (Acf ,Bcf ,Ccf), ckcf

1 enforce Sig.V(vkΣ, σ,H(hk,meta)) ▷ Verify σ
2 Reconstruct 𝕌k and 𝕦k:

𝕌k := 𝕌′
k

𝕌k.x := xk

𝕦k := 𝕦′k
𝕦k.x := (ϱ(𝕌k, k,z0, (hk,ℏk)), ϱ(𝕌cf

k , k), ρ(𝕦k.Q))

3 enforce r = ρ(𝕌k, 𝕦k, T) ▷ Check r
4 𝕌𝔽

k+1 := NIFS.V𝔽(vk,𝕌𝔽
k, 𝕦𝔽k, r) ▷ Compute 𝕌𝔽

k+1

5 Check 𝕎k+1 against 𝕌𝔽
k+1:

Parse (u,x) := 𝕌𝔽
k+1, (q,w, e) := 𝕎k+1

v := (u,x, q,w)
enforce Av ◦Bv = u ·Cv + e

6 Check 𝕎cf
k against 𝕌cf

k :
Parse (u,x, Q,W,E) := 𝕌cf

k , (q,w, e) := 𝕎cf
k

v := (u,x, q,w)
enforce Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q)
enforce q = ∅ ∧Q = 0
enforce CM.V(ckcf ,w,W)
enforce CM.V(ckcf , e, E)

To verify the proof, V checks if the metadata meta
and parameters param are acceptable. Similar to P , V runs
the decoding algorithm D on ζ to obtain (P i)

bk−1
i=0 and

(Zi)
bk−1
i=0 . After that, V computes ℏk by hashing (P i)

bk−1
i=0 ,

(Zi)
bk−1
i=0 , and (parami)

bk−1
i=0 . It is also V’s task to check the

commitments in 𝕌𝔾
k ,𝕦𝔾k and 𝕌𝔾

k+1, which are not included
in the decider circuit FDeciderEva due to the complexity of
non-native group operations. With the randomness r and
the cross term commitment T , V derives 𝕌𝔾

k+1 by calling
NIFS.V𝔾 on 𝕌𝔾

k ,𝕦𝔾k . The commitments Q,W,E in 𝕌𝔾
k+1

are linked to the in-circuit witnesses q,w, e in 𝕎k+1 via
ZKCP. Note that V cannot learn hk from r := ρ(𝕌k,𝕦k,
T), since 𝕌k.x, the random linear combination of all pre-
vious public inputs, is also kept secret. Finally, by running
ZKCP.V , the verifier can check the authenticity of the video.

We summarize the Eva protocol in Algorithm 8.

Algorithm 8: Eva
1 Fn Eva.KΣ(1

λ):
2 return (skΣ, vkΣ)← Sig.K(1λ)
3 Fn Eva.KΠ(1

λ):
4 pp← IVC.G(1λ) ▷ pp contains ck
5 (pkΦ, vkΦ) := IVC.K(pp,FEva)

6 (pk, vk)← ZKCP.K(1λ, ck,F
DeciderEva

)
7 return (pkΠ := (pk, pkΦ), vkΠ := (vk, vkΦ))

8 Fn Eva.R(skΣ,V ,meta):
9 return σ ← Sig.S(skΣ,H(V ,meta))

10 Fn Eva.P(pkΠ, vkΣ,V ,meta, param, σ):
11 V ′ := ∆(V , (param∆

i)bk−1
i=0)

12 Encode V ′ and extract (P i)
bk−1
i=0 , (Zi)

bk−1
i=0 :

ζ := E(V ′, (paramE
i)

bk−1
i=0)

13 z0 := (0, 0), π0 := ((𝕌⊥,𝕎⊥), (𝕌⊥,𝕎⊥), (𝕌cf
⊥,𝕎cf

⊥))
14 for j ∈ [0, k) do
15 auxj := (Xi,P i,Zi, parami)

bj+b−1
i=bj

16 πj+1 ← IVC.P(pkΦ, (j, z0,zj), auxj , πj)
17 zj+1 := F(zj ; auxj)

18 Parse (hk, ℏk) := zk,
((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf

k ,𝕎cf
k)) := πk

19 (𝕌k+1,𝕎k+1, T) := NIFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))
20 r := ρ(𝕌k, 𝕦k, T)
21 x := (vkΣ,meta, k,z0, ℏk, r, 𝕦′k,𝕌′

k, T), c := (𝕌𝔾
k+1)

22 υ := (𝕎k+1),ω := (hk, σ,𝕌k.x,𝕌cf
k ,𝕎cf

k)
23 ϖ ← ZKCP.P(pk,x, c,υ,ω)
24 return ζ, π := (ϖ,𝕌′

k, 𝕦′k, T , r)
25 Fn Eva.V(vkΠ, vkΣ, ζ,meta, param, π):
26 Parse (ϖ,𝕌′

k, 𝕦′k, T , r) := π
27 Decode ζ and extract (P i)

bk−1
i=0 , (Zi)

bk−1
i=0 :

Ṽ := D(ζ, (paramE
i)

bk−1
i=0)

28 ℏ0 := 0
29 for j ∈ [0, k) do
30 ℏj+1 := H(ℏj , (H(P i,Zi, parami))

bj+b−1
i=bj)

31 𝕌𝔾
k+1 := NIFS.V𝔾(vkΦ,𝕌𝔾

k , 𝕦𝔾k , r, T)
32 assert 𝕦′k.u = 1, 𝕦′k.E = 0 ▷ Check 𝕦′k
33 x := (vkΣ,meta, k, (0, 0), ℏk, r, 𝕦′k,𝕌′

k, T), c := (𝕌𝔾
k+1)

34 return ZKCP.V(vk,x, c, ϖ)

5.3. Security

We formally capture the security properties of Eva
in Theorem 1, whose proof is deferred to Appendix B.

Theorem 1. Eva is a succinct and zero-knowledge proof of
video authenticity.

6. Implementation and Evaluation

We rely on the H.264 reference implementation JM [58]
to encode and decode videos.We modify its source code and
hook the encoding and decoding processes to extract the

prediction macroblocks and quantized coefficients, as they
are necessary for proof generation and verification.

Then we develop Eva in Rust over the BN254/Grumpkin
half-pairing cycle of curves. In the implementation1, we
use the arkworks library [59] for algebraic operations and
circuit constructions. We build Loua, our variant of Nova,
by improving the implementation in sonobe [35]. We also
provide an alternative implementation of LegoGro16. Unlike
the original implementation [60], ours is more flexible and
performant: it allows for shared witnesses (υ)ℓ−1

i=0 with arbi-
trary length and supports increased parallelism. We further
employ various optimizations in our implementation. GPU is
used to accelerate commitment and cross term computation
in our NIFS, where the former is powered by icicle [61],
while the latter is implemented by us. H, ϱ and ρ are instanti-
ated with Griffin [37], a circuit-friendlier hash function than
Poseidon [62]. A large batch size b is chosen to amortize
the overhead for NIFS.V in the augmented circuit of Eva.

To evaluate our implementation of Eva, we compile it
with multi-threading and AVX2 enabled, and run it on a
consumer-grade PC equipped with an Intel Core i9-12900K
CPU (16 cores, 24 threads) with 64 GB of RAM and an
NVIDIA GeForce RTX 3080 GPU with 12 GB of VRAM.

For testing purposes, we utilize two raw video files that
are widely used for video codec benchmarking, as shown
in Figure 3. The first video, “foreman.yuv,” contains 256
frames of size 352 × 288, which is used to demonstrate
Eva’s capability to handle a variety of editing operations.
We apply several editing operations to it, including grayscale
conversion, brightness adjustment, color inversion, masking,
cropping, and cutting, and we give the preview of the edited
videos in Figure 4. In the second video “bunny.yuv,” each
frame is of size 1280×720. To showcase the scalability and
practicality of Eva, we test two clips, one has L = 1800
frames (1 minute at 30 FPS), and the other has L = 3600
frames (2 minute at 30 FPS).

(a) foreman.yuv (b) bunny.yuv

Figure 3: Preview of original videos in the test dataset

Microbenchmarks. We fix the batch size b = 256 and study
how the editing operation ∆ affects the prover performance
in Eva. Table 2 summarizes the number of constraints in
the augmented step circuit Faug and the decider circuit
FDeciderEva . It also reports the running time as well as the
RAM usage of IVC.P and Decider.P . The detailed analysis
of the number of constraints in Faug for different ∆ can be
found in Table 3. Across different operations, the running
time of IVC.P ranges from 145 to 206 ms, and the peak
RAM usage varies from 7 to 11 GB. Decider.P takes much

1. The source code can be found here.

more time (65 ∼ 80 s) and RAM (40 ∼ 50 GB) to compress
an IVC proof, but it only happens once at the end of Eva.P .
End-to-end performance. The end-to-end performance of
Eva is evaluated based on the running time of each al-
gorithm. We test Eva with b = 256 on both videos in
the dataset. For “foreman.yuv”, we apply various editing
operations to it, while for “bunny.yuv”, we consider different
lengths. The results are presented in Table 4.

In Eva.P , it takes 57 ∼ 82 seconds to finish all IVC steps
for “foreman.yuv”. Regarding “bunny.yuv”, the IVC proof
generation in total necessitates 1.19 hours for the 1-minute
clip and 2.39 hours for the 2-minute clip. An additional 65 ∼
80 seconds is needed to make the proof fully succinct and
zero-knowledge by running ZKCP.P in our decider, which
produces a constant-size proof of 448 bytes. The entire proof
generation process is completed within 60 GB of RAM,
which is primarily due to the additional ZKCP.P step.

From the results, we conclude that the total IVC time
scales linearly with the video size. Specifically, the IVC time
for any video of size M ×N ×L can be estimated by com-
puting the number of IVC steps k = (M/16×N/16×L)/b
and scaling the single step time of IVC.P in Table 2. This is
confirmed by the results for “foreman.yuv” and “bunny.yuv”
under operation ∆id (and is also applicable for any other
∆): for the former, it requires k = (352/16 × 288/16 ×
256)/256 = 396 steps, and thus the estimated total time
is 168.436 ms × 396 = 66.701 s, which equals the actual
time in Table 4; similarly, for the 1-minute and 2-minute
clips of “bunny.yuv”, we can estimate that the total IVC
time is 4263.536 s and 8527.072 s respectively, both within
a relative error of 1% compared to the actual time.

Another conclusion is that the ZKCP.P time is constant
with respect to the number of IVC steps (and hence, the
video size). Thus, although ZKCP.P constitutes a significant
portion of the prover time for small videos, this one-time
cost becomes less and less significant for larger videos.

The recorder R’s time is dominated by the computation
of Griffin hash, whose complexity is linear in the size of the
original video V . Similarly, H is also the bottleneck of V ,
but it depends on the size of prediction macroblocks P and
quantized coefficients Z of the edited video V ′. Thus, with
∆remove, the verifier takes less time for computing H than
other editing operations. In addition, V needs to validate the
ZKCP proof by running ZKCP.V , which always takes 2 ∼ 3
ms regardless of video size and editing operation.
Comparison with related work. Finally, we compare the
performance of Eva with related work on image authen-
tication based on zkSNARKs [18], [19], [20], [21], [22],
focusing specifically on the prover time. PhotoProof [17]
is not included in the comparison, as it only supports tiny
images of size up to 128×128. Due to differences in image
and video codecs, a common dataset cannot be used across
all protocols. Consequently, the prover time is evaluated
based on the number of pixels in the image or video.

For protocols that support arbitrary editing opera-
tions [19], [20], [21], [22], we select two representative oper-
ations for comparison: grayscale conversion and cropping.
The target resolution for the cropping operation is set to

https://github.com/winderica/eva

(a) ∆gray (b) ∆bright (c) ∆inv (d) ∆mask (e) ∆remove (crop) (f) ∆remove (cut)

Figure 4: Preview of videos edited from “foreman.yuv”

TABLE 2: Benchmarking results of IVC.P and Decider.P for different editing operation ∆ with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

|FaugEva | 1429212 1101532 1887964 1429212 1802460 1528031
Time (ms) 168.436 144.810 205.896 168.345 192.507 171.738

Peak RAM (GB) 8.493 6.845 9.644 8.566 11.084 8.694
|FDeciderEva | 9539233 8916641 10391201 9539233 10187425 9736614

Time (s) 69.233 65.017 73.499 69.274 80.391 70.630
Peak RAM (GB) 44.226 39.560 48.601 45.705 52.766 43.797

IVC.P

Decider.P

TABLE 3: Breakdown of the number of R1CS constraints in Faug for FEva with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

42 42 42 42 426 43
0 0 1024 0 384 384

Y

U 320 0 320 320 320 320
V 320 0 320 320 320 320

612 612 612 612 918 613

5508 5508 5508 5508 5508 5511
760584 596744 1022728 760584 1035528 859403

594177 430337 790785 594177 692481 594177

668628 504788 865236 668628 766932 668628

1429212 1101532 1887964 1429212 1802460 1528031

F
E
va

Pr
oc

es
s
b
=

2
5
6

bl
oc

ks

Create variables

×256

F∆

FE

FDiff 0
FTrans 0

FQuant

1328

H(X) 306
H(P ,Z, param)

H(hi, · · ·) 5508
H(ℏi, · · ·)

Subtotal

A
ug

m
en

ta
tio

n Create variables 6865
Fold 𝕦𝔽i into 𝕌𝔽

i 13361
Fold 𝕦cfi into 𝕌cf

i 45108
Check lookup identity

Compute outputs 9117
Subtotal

Total

Subroutine Editing Op.









TABLE 4: End-to-end performance of Eva with b = 256.

H(s) Sig.S(µs) all steps of IVC.P (s) ZKCP.P (s) H (s) ZKCP.V (ms)
∆id 63.709 101.260 1.271 92.204 66.701 69.233 1.803 2.995
∆gray 63.325 89.548 1.276 92.137 57.345 65.017 1.784 2.644
∆bright 63.402 115.164 1.283 92.921 81.535 73.499 1.794 2.750
∆inv 63.223 102.111 1.274 92.932 66.665 69.274 1.802 3.102
∆mask 63.481 118.741 1.308 92.538 76.233 80.391 2.347 2.941

∆remove 63.089 105.865 1.280 92.726 68.008 70.630
0.990 (crop)
0.883 (cut)

3.060

1800 ∆id 63.250 101.913 81.713 92.488 4297.587 69.835 114.301 3.222
3600 ∆id 63.675 101.401 166.202 92.935 8617.108 70.277 229.339 3.084

L ∆ KΣ (µs) KΠ (s)
R P V

foreman 256

bunny

640×480. Since the source code of ZK-IMG is not available,
we rely on existing results for comparison. Specifically, we
adopt the prover time for operations “RGB2YCbCr” and
“Crop (HD → SD)” on HD (1280 × 720) images reported
in [19, Table 4]. Note that ZK-IMG was evaluated on a
powerful server with 64 CPU cores and 512 GB of RAM,
suggesting that the prover would be slower on our machine.
All remaining protocols are evaluated on our same machine.
Figure 5a and Figure 5b show the results of prover time with
a logarithmic scale on both axes.

In VIMz, VerITAS, TilesProof, and Eva, the prover time
for both ∆gray and ∆crop increases nearly linearly with
the number of pixels. We observe that Eva is generally
faster than ZK-IMG, VIMz, VerITAS, and TilesProof, ex-
cept at low resolutions (e.g., 640 × 480), where VerITAS
and TilesProof outperform Eva due to our relatively long
(but one-time) ZKCP.P time. This also explains why the
prover time for Eva does not appear as a straight line when
the number of pixels is small. However, as the resolution
increases, the ZKCP-based decider is no longer the dominant

217 222 227 232

102

103

104

105

106

217 222 227 232
101

102

103

104

105

106

VIR [18] ZK-IMG [19] VIMz [20] VerITAS [21] TilesProof [22] Eva

217 222 227 232

101

102

103

104

105

(a) Grayscale conversion (b) Cropping (c) Masking

Figure 5: Comparison of prover time (y-axis, in seconds) across different protocols w.r.t. the number of pixels (x-axis).

factor in our prover, allowing the advantages of our efficient
IVC.P to become apparent. In particular, for 4K resolution
(3840 × 2160), Eva is 5.8 ∼ 92 times faster than VIMz,
VerITAS and TilesProof. Further, we estimate that if we
apply them to the 2-minute clip of “bunny.yuv” even without
considering memory constraints and lossy encoding, their
proof generation would be respectively 73 ∼ 262, 36 ∼ 69,
and 24 ∼ 56 times longer than Eva, depending on ∆.

For VIR [18], their redaction operation is equivalent to
our masking operation with black tiles as the mask. Thus,
we compare Eva with VIR in terms of ∆mask and present
the results in Figure 5c. To ensure a fair comparison, we
set the granularity of redaction (i.e., the minimum size of
black tiles) in VIR to 1× 1, matching the granularity of our
masking operation. For relatively small number of pixels,
our prover takes longer than VIR due to the one-time cost
of the decider. However, when the data size increases, the
prover time of VIR increases more rapidly than ours, and
Eva begin to outperform VIR for 4K and larger resolution.
We also estimate that, even with unlimited RAM, VIR is
5.5x slower than Eva when proving the masking operation
for the 2-minute “bunny.yuv”.

7. Discussion

We further explore practical considerations for deploying
Eva in real-world scenarios.
On-chain verification. It is possible to deploy Eva on
blockchains to provide on-chain verification of video au-
thenticity. More specifically, with ℏk computed by the user,
the smart contract can check if the proof π is valid. This is
practical because π is on the BN254 curve, which is natively
supported by Ethereum and its Layer 2 solutions. Also,
thanks to our design of decider based on LegoGroth16 [34],
π is very small and only require 2 pairings for verification.
We estimate that verifying π on EVM requires ∼ 362000
gas, or equivalently ∼ 16 USD as of August 2024.

In comparison, although Dziembowski et al. claim that
VIMz [20] supports on-chain verification, the concrete costs
of their smart contracts are not provided in their paper,

which turn out to be prohibitively high. In fact, they
choose Spartan as the zkSNARK for decider and rely on
the solidity-verifier library [63] for verifying Spartan
proofs on EVM, requiring ∼ 200M gas or ∼ 9000 USD.
Implementation of the recorder. Note that in Eva, both
R and P take the raw footage V as input. This implies
that R should send to P the recorded video V as is, in an
uncompressed or losslessly encoded manner.

In practice, R is usually resource-constrained and hence
only allows lossily encoded videos. Thus, P needs to decode
Ṽ from the encoded video stream ζ before editing and
proving. But due to information loss, Ṽ is different from
the original video V that R signs, leading to a mismatch
between the signed video and the video to be proven.

To address this mismatch, an intuitive solution is to
requireR to sign ζ. Then, P needs to prove 1) Sig.V(vkΣ, ζ,
σ), 2) honest editing and encoding on Ṽ , and additionally 3)
Ṽ = D(ζ) to connect 1) with 2). Nevertheless, this approach
is impractical due to the complex decoding algorithm D.

We adopt a more strategic approach, where R takes an
additional step of decoding ζ and signs the decoded Ṽ
instead of ζ. This ensures that the video that R signs is
exactly the one proven by P , thereby eliminating the need
for proving correct decoding. Here, R does not need to store
the decoded Ṽ for signature generation, as R can hash Ṽ
on-the-fly: R maintains a short digest as the accumulated
hash, and once a new macroblock is populated by the
decoder, R absorbs it into the accumulated digest, which
can then be discarded.

Acknowledgments

This research was partially funded by the Engineering
and Physical Sciences Research Council (EPSRC) under
grant EP/R012598/1 and EP/S030867/1. The authors would
like to thank Yihua Cheng for the discussion on related
work based on detection, and the developers of sonobe for
reviewing the pull request for optimizing non-native field
operations in the decider circuit. Chengru Zhang was visiting
UCL when working on this research.

References

[1] Dan Milmo. Youtube is major conduit of fake news,
factcheckers say. https://www.theguardian.com/technology/2022/jan/
12/youtube-is-major-conduit-of-fake-news-factcheckers-say.

[2] Emma Tucker. Tiktok’s search engine repeatedly de-
livers misinformation to its majority-young user base,
report says. https://edition.cnn.com/2022/09/18/business/
tiktok-search-engine-misinformation/index.html.

[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10684–10695, 2022.

[4] Zach Evans, CJ Carr, Josiah Taylor, Scott H Hawley, and Jordi
Pons. Fast timing-conditioned latent audio diffusion. In Forty-first
International Conference on Machine Learning, 2024.

[5] Dan Kondratyuk, Lijun Yu, Xiuye Gu, Jose Lezama, Jonathan Huang,
Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan,
Ming-Chang Chiu, et al. Videopoet: A large language model for
zero-shot video generation. In Forty-first International Conference
on Machine Learning, 2024.

[6] Rashid Tahir, Brishna Batool, Hira Jamshed, Mahnoor Jameel,
Mubashir Anwar, Faizan Ahmed, Muhammad Adeel Zaffar, and
Muhammad Fareed Zaffar. Seeing is believing: Exploring perceptual
differences in deepfake videos. In Proceedings of the 2021 CHI
conference on human factors in computing systems, pages 1–16, 2021.

[7] Matthew Groh, Ziv Epstein, Chaz Firestone, and Rosalind Picard.
Deepfake detection by human crowds, machines, and machine-
informed crowds. Proceedings of the National Academy of Sciences,
119(1):e2110013119, 2022.

[8] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-
df: A large-scale challenging dataset for deepfake forensics. In
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3207–3216, 2020.

[9] Alexandros Haliassos, Konstantinos Vougioukas, Stavros Petridis, and
Maja Pantic. Lips don’t lie: A generalisable and robust approach to
face forgery detection. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 5039–5049, 2021.

[10] Coalition for Content Provenance and Authenticity. Content Creden-
tials: C2PA Technical Specification, 2.0 edition, 2024.

[11] Baris Coskun, Bulent Sankur, and Nasir Memon. Spatio–temporal
transform based video hashing. ieee Transactions on Multimedia,
8(6):1190–1208, 2006.

[12] Fouad Khelifi and Ahmed Bouridane. Perceptual video hashing
for content identification and authentication. IEEE Transactions on
Circuits and Systems for Video Technology, 29(1):50–67, 2017.

[13] Paarth Neekhara, Shehzeen Hussain, Xinqiao Zhang, Ke Huang,
Julian McAuley, and Farinaz Koushanfar. Facesigns: Semi-fragile
watermarks for media authentication. ACM Transactions on Multi-
media Computing, Communications and Applications, 2024.

[14] Iacopo Masi, Aditya Killekar, Royston Marian Mascarenhas,
Shenoy Pratik Gurudatt, and Wael AbdAlmageed. Two-branch recur-
rent network for isolating deepfakes in videos. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part VII 16, pages 667–684. Springer, 2020.

[15] Shehzeen Hussain, Paarth Neekhara, Malhar Jere, Farinaz Koushan-
far, and Julian McAuley. Adversarial deepfakes: Evaluating vulnera-
bility of deepfake detectors to adversarial examples. In Proceedings of
the IEEE/CVF winter conference on applications of computer vision,
pages 3348–3357, 2021.

[16] Jonathan Prokos, Neil Fendley, Matthew Green, Roei Schuster, Eran
Tromer, Tushar Jois, and Yinzhi Cao. Squint hard enough: Attack-
ing perceptual hashing with adversarial machine learning. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 211–228,
2023.

[17] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image
authentication for any set of permissible transformations. In 2016
IEEE Symposium on Security and Privacy (SP), pages 255–271.
IEEE, 2016.

[18] Hankyung Ko, Ingeun Lee, Seunghwa Lee, Jihye Kim, and Hyunok
Oh. Efficient verifiable image redacting based on zk-SNARKs. In
Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, pages 213–226, 2021.

[19] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Zk-img:
Attested images via zero-knowledge proofs to fight disinformation.
arXiv preprint arXiv:2211.04775, 2022.

[20] Stefan Dziembowski, Shahriar Ebrahimi, and Parisa Hassanizadeh.
VIMz: Verifiable image manipulation using folding-based zk-
SNARKs. Cryptology ePrint Archive, 2024.

[21] Trisha Datta, Binyi Chen, and Dan Boneh. Veritas: Verifying image
transformations at scale. Cryptology ePrint Archive, 2024.

[22] Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti, and Marco
Zecchini. Trust nobody: Privacy-preserving proofs for edited photos
with your laptop. In 2025 IEEE Symposium on Security and Privacy
(SP), pages 14–14. IEEE Computer Society, 2024.

[23] Paul Valiant. Incrementally verifiable computation or proofs of
knowledge imply time/space efficiency. In Theory of Cryptography:
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA,
March 19-21, 2008. Proceedings 5, pages 1–18. Springer, 2008.

[24] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Re-
cursive zero-knowledge arguments from folding schemes. In Annual
International Cryptology Conference, pages 359–388. Springer, 2022.

[25] Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal
machine executions without universal circuits. Cryptology ePrint
Archive, 2022.

[26] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive argu-
ments for customizable constraint systems. In Annual International
Cryptology Conference, pages 345–379. Springer, 2024.

[27] Benedikt Bünz and Binyi Chen. Protostar: generic efficient accumula-
tion/folding for special-sound protocols. In International Conference
on the Theory and Application of Cryptology and Information Secu-
rity, pages 77–110. Springer, 2023.

[28] Liam Eagen and Ariel Gabizon. Protogalaxy: Efficient protostar-style
folding of multiple instances. Cryptology ePrint Archive, 2023.

[29] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and
Mary Maller. Arya: Nearly linear-time zero-knowledge proofs for
correct program execution. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 595–
626. Springer, 2018.

[30] Ariel Gabizon and Zachary J Williamson. plookup: A simplified
polynomial protocol for lookup tables. Cryptology ePrint Archive,
2020.

[31] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. Caulk: Lookup arguments in
sublinear time. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 3121–3134, 2022.

[32] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup
singularity with Lasso. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 180–
209. Springer, 2024.

[33] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives.
Cryptology ePrint Archive, 2022.

[34] Matteo Campanelli, Dario Fiore, and Anaı̈s Querol. Legosnark:
Modular design and composition of succinct zero-knowledge proofs.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 2075–2092, 2019.

[35] Privacy & Scaling Explorations. sonobe: Experimental fold-
ing schemes library. https://github.com/privacy-scaling-explorations/
sonobe, 2023.

https://www.theguardian.com/technology/2022/jan/12/youtube-is-major-conduit-of-fake-news-factcheckers-say
https://www.theguardian.com/technology/2022/jan/12/youtube-is-major-conduit-of-fake-news-factcheckers-say
https://edition.cnn.com/2022/09/18/business/tiktok-search-engine-misinformation/index.html
https://edition.cnn.com/2022/09/18/business/tiktok-search-engine-misinformation/index.html
https://github.com/privacy-scaling-explorations/sonobe
https://github.com/privacy-scaling-explorations/sonobe

[36] ITU Telecommunication Standardization Sector. H.264: Advanced
video coding for generic audiovisual services, 14 edition, 2021.

[37] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus
Schofnegger, Roman Walch, and Qingju Wang. Horst meets fluid-
spn: Griffin for zero-knowledge applications. In Annual International
Cryptology Conference, pages 573–606. Springer, 2023.

[38] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Advances in Cryptology—CRYPTO’89 Proceedings 9, pages
239–252. Springer, 1990.

[39] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay
arguments from signature cards. In Innovations in Computer Science
- ICS 2010, volume 10, pages 310–331, 2010.

[40] Zcash. The Halo2 zero-knowledge proving system. https://github.
com/zcash/halo2, 2022.

[41] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaı̈s Querol, and
Hadrián Rodrı́guez. Lunar: a toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In Advances
in Cryptology–ASIACRYPT 2021: 27th International Conference on
the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part III 27, pages
3–33. Springer, 2021.

[42] ITU Telecommunication Standardization Sector. H.265: High effi-
ciency video coding, 9 edition, 2023.

[43] Alliance for Open Media. AV1 Bitstream & Decoding Process
Specification, 1 edition, 2019.

[44] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra,
and Nicholas Spooner. Proof-carrying data without succinct argu-
ments. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16–20, 2021, Proceedings, Part I 41, pages 681–710. Springer,
2021.

[45] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and
Arya Tabaie. gnark is a fast zk-snark library that offers a high-level
api to design circuits. https://github.com/Consensys/gnark, 2023.

[46] Jens Groth. On the size of pairing-based non-interactive arguments.
In Advances in Cryptology–EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II
35, pages 305–326. Springer, 2016.

[47] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive ar-
guments of knowledge. Cryptology ePrint Archive, 2019.

[48] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the
theory and application of cryptographic techniques, pages 186–194.
Springer, 1986.

[49] Abhiram Kothapalli and Srinath Setty. Cyclefold: Folding-scheme-
based recursive arguments over a cycle of elliptic curves. Cryptology
ePrint Archive, 2023.

[50] Benedikt Bünz and Jessica Chen. Proofs for deep thought: Accumu-
lation for large memories and deterministic computations. Cryptology
ePrint Archive, 2024.

[51] Abhiram Kothapalli and Srinath Setty. Neutronnova: Folding every-
thing that reduces to zero-check. Cryptology ePrint Archive, 2024.

[52] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks
from dark compilers. In Advances in Cryptology–EUROCRYPT 2020:
39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part I 39, pages 677–706. Springer, 2020.

[53] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE symposium on security and
privacy (SP), pages 315–334. IEEE, 2018.

[54] Jonathan Lee. Dory: Efficient, transparent arguments for generalised
inner products and polynomial commitments. In Theory of Cryptog-
raphy Conference, pages 1–34. Springer, 2021.

[55] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Advances
in Cryptology-ASIACRYPT 2010: 16th International Conference on
the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16, pages 177–194.
Springer, 2010.

[56] Torben Pryds Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Annual international cryptology
conference, pages 129–140. Springer, 1991.

[57] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark:
A framework for efficient verifiable computation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 944–961. IEEE,
2018.

[58] MPEG & VCEG Joint Video Team. H.264/AVC JM reference
software. https://vcgit.hhi.fraunhofer.de/jvet/JM, 2019.

[59] arkworks contributors. arkworks zksnark ecosystem. https://
arkworks.rs, 2022.

[60] Lovesh Harchandani. legogro16: LegoGroth16 implementation on top
of Zexe. https://github.com/lovesh/legogro16, 2023.

[61] Ingonyama. icicle: a GPU library for zero-knowledge acceleration.
https://github.com/ingonyama-zk/icicle, 2023.

[62] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A new hash function for
Zero-Knowledge proof systems. In 30th USENIX Security Symposium
(USENIX Security 21), pages 519–535, 2021.

[63] Lurk Lab. solidity-verifier: Solidity implementation of nova proving
system verifier. https://github.com/lurk-lab/solidity-verifier, 2023.

[64] Jens Ernstberger, Chengru Zhang, Luca Ciprian, Philipp Jovanovic,
and Sebastian Steinhorst. Zero-Knowledge Location Privacy via
Accurate Floating-Point SNARKs . In 2025 IEEE Symposium on
Security and Privacy (SP), pages 57–57, Los Alamitos, CA, USA,
2025. IEEE Computer Society.

[65] Dario Catalano and Dario Fiore. Vector commitments and their appli-
cations. In Public-Key Cryptography–PKC 2013: 16th International
Conference on Practice and Theory in Public-Key Cryptography,
Nara, Japan, February 26–March 1, 2013. Proceedings 16, pages
55–72. Springer, 2013.

Appendix A.
Encoding and Editing Gadgets

A.1. Gadgets for Video Encoding

We provide efficient constructions of gadgets for trans-
form and quantization operations compatible with H.264.

A.1.1. Transform. The transform operation in H.264 is
based on 4 × 4 DCT (Discrete Cosine Transform), but for
efficiency, it only involves integer operations, while the
fractional part of the DCT coefficients is handled in the
quantization step. With the core transform matrix C4, the
transform on a 4×4 block Λ is computed as Γ := C4ΛC⊺

4 .
Hence, to construct the transform gadget FTrans, we di-
vide the color components RY,RCb,RCr of a residual
macroblock R into 4 × 4 blocks and apply the transform
operation on each block. Since every entry ri,j in R is
in [−255, 255], the matrix multiplication can be natively
performed in 𝔽p without overflow.

https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://github.com/Consensys/gnark
https://vcgit.hhi.fraunhofer.de/jvet/JM
https://arkworks.rs
https://arkworks.rs
https://github.com/lovesh/legogro16
https://github.com/ingonyama-zk/icicle
https://github.com/lurk-lab/solidity-verifier

After the core transform, the DC (i.e., the first) co-
efficients of all blocks from every color component are
collected into a 4 × 4 matrix BY and two 2 × 2 matrices
BCb,BCr, while the AC (i.e., the remaining) coefficients
are unchanged. These matrices are transformed again us-
ing Hadamard matrices H4 and H2, respectively. Finally,
the transformed DC and AC coefficients DY,DCb,DCr,
(AY

i)
15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0 are returned. The entire in-

circuit transform process is depicted in Gadget 9.

Gadget 9: FTrans(R)

1 C4 :=

[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]
,H4 :=

[
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

]
,H2 :=

[
1 1
1 −1

]
2 for k ∈ [0, 16) do
3 i := ⌊k/4⌋, j := k mod 4
4 AY

k := C4R
Y[4i, 4i+ 4; 4j, 4j + 4]C⊺

4

5 bYi,j := aYk,0,0

6 for k ∈ [0, 4) do
7 i := ⌊k/2⌋, j := k mod 2
8 ACb

k := C4R
Cb[4i, 4i+ 4; 4j, 4j + 4]C⊺

4

9 ACr
k := C4R

Cr[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

10 bCbi,j := aCbk,0,0
11 bCri,j := aCrk,0,0

12 DY := H4B
YH⊺

4

13 DCb := H2B
CbH⊺

2

14 DCr := H2B
CrH⊺

2

15 Y := ((AY
i)

15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0,D

Y,DCb,DCr)
16 return Y

A.1.2. Quantization. The quantization step maps a coeffi-
cient v from the transform step to a quantized value u. This
process is lossy, and how much information is preserved is
controlled by the quantization parameter qp in H.264.

In general, the quantized coefficient is computed by
u := ⌊v × ψ/2δ⌉, i.e., we first scale the transformed co-
efficient v by ψ/2δ and then round the result to the nearest
integer. Here, ψ is the multiplication factor that takes the
fractional part of the DCT coefficients into account, and
δ is the number of bits to be right-shifted. In practice,
⌊v × ψ/2δ⌉ is done with approximate integer operations,
which are more efficient in hardware. Specifically, we first
compute the absolute value abs(u) := (abs(v)×ψ+ϕ)>>δ,
where ϕ is an offset determined by qp, and u is then derived
based on the sign sign(u) := sign(v).

When dealing with scaling and rounding in-circuit, we
leverage the efficient gadgets FSignAbs (Gadget 11) and F>>

(Gadget 12) in [64] for computing absolute values and shift-
ing operations. Both gadgets are built upon FEnforceBitLen

(Gadget 10), which enforces that the input x has at most W
bits by making queries to a lookup table. Such queries can
be efficiently checked by our IVC with lookup arguments in-
tegrated. For details of the construction, please refer to [64].

With these gadgets, we give the construction of the
FScaleRound gadget for scaling and rounding an input co-
efficient v in-place in Gadget 13. Now we are finally ready

Gadget 10: FEnforceBitLen(x,W)

1 (xi)
W/ log ν−1
i=0 ← Hint(x)

2 enforce
∑W/ log ν−1

i=0 2i log νxi = x

3 α := (α, (xi)
W/ log ν−1
i=0)

Gadget 11: FSignAbs(x ∈ [−2W + 1, 2W − 1])

1 s← Hint(x)
2 y := s ? x :−x
3 enforce s(1− s) = 0
4 FEnforceBitLen(y,W)
5 return s, y

Gadget 12: F>>(x ∈ [0, 2W − 1], δ ∈ [U, V])

1 x′ := x · 2V −δ

2 q, r ← Hint(x′)
3 enforce x′ = q · 2V + r
4 FEnforceBitLen(q,W − U)
5 FEnforceBitLen(r, V)

Gadget 13: FScaleRound(v, ψ, ϕ, δ)

1 (s, u)← FSignAbs(v)
2 t := F>>(u× ψ + ϕ, δ)
3 v := s ? t :−t

to present the quantization gadget FQuant. For an AC coef-
ficient ai,j , the multiplication factor is in the (qp mod 6)-th
row and the pi,j-th column of the matrix of multiplication
factors Ψ, where pi,j is an element in another matrix P . On
the other hand, the multiplication factor for DC coefficients
are always ψ0,0. Then, for all AC and DC blocks, we apply
the FScaleRound gadget to quantize their coefficients with the
corresponding parameters, except that the DC coefficients
for luma are right shifted by 1 bit before quantization.

The entire quantization process is summarized in Gad-
get 14, with qp and mode included in paramE .

A.2. Gadgets for Video Editing

We showcase gadgets for video editing, including color
manipulations (grayscale conversion, brightness adjustment,
color inversion) and spatial and temporal operations (mask-
ing, cropping, cutting). Additionally, we explain how to
perform complex editing operations that involve multiple
macroblocks in-circuit.

A.2.1. Color Manipulations. Thanks to the use of the
YCbCr color space, it is straightforward to perform common
color manipulations for videos encoded in H.264 or in many
other video codecs. In contrast, color operations on RGB of-
ten involve the conversion between color spaces, demanding
for in-circuit fixed-point or floating-point computation.

For instance, when converting pixels in grayscale, we
can simply keep the Y component unchanged while setting

Gadget 14: FQuant(Y , paramE)

1 Parse ((AY
i)

15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0,D

Y,DCb,DCr) := Y
2 Parse (qp,mode, ·) := paramE

3 q := ⌊qp/6⌋, r := qp mod 6
4 f := ((mode = “intra”) ? 682 : 342)× 24+q

5 Ψ :=

 13107 5243 8066
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
7282 2893 4559

,P :=

[
0 2 0 2
2 1 2 1
0 2 0 2
2 1 2 1

]
6 for A ∈ ((AY

i)
15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0) do

7 for i ∈ [0, 4), j ∈ [0, 4) do
8 FScaleRound(ai,j , ψr,pi,j , f, 15 + q)

9 for i ∈ [0, 4), j ∈ [0, 4) do
10 FScaleRound(F>>(dYi,j , 1), ψ0,0, 2f, 16 + q)

11 for D ∈ (DCb,DCr) do
12 for i ∈ [0, 2), j ∈ [0, 2) do
13 FScaleRound(di,j , ψ0,0, 2f, 16 + q)

14 Z := ((AY
i)

15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0,D

Y,DCb,DCr)
15 return Z

the chroma components to 128, because the luma component
already represents the luminance in YCbCr. The correspond-
ing gadget is depicted in Gadget 15.

Gadget 15: F∆gray(X)

1 Parse (XY, ·) := X
2 return X ′ := (XY,128,128)

When adjusting the brightness, we only need to focus on
the luma component, which is scaled by a factor parambright

and clamped to [0, 255], as shown in Gadget 16. We support
65536 levels of brightness adjustment, with parambright =
β

256 ∈ {
0

256 ,
1

256 , . . . ,
65535
256 }. For a luma component xY, the

gadget first computes β×xY and then right shifts the product
by 8 bits. In order to clamp the product to [0, 255], we again
shift the result to the right by 8 bits. We return the original
result if the remaining bits are all 0, otherwise 255.

Gadget 16: F∆bright(X, parambright = β
256)

1 Parse (XY,XCb,XCr) := X
2 for i ∈ [0, 16), j ∈ [0, 16) do
3 u := F>>(xYi,j × β, 8)
4 v := F>>(u, 8)
5 xYi,j := (v = 0) ? u : 255

6 return X ′ := (XY,XCb,XCr)

Gadget 17 inverts the color of a macroblock by subtract-
ing all components in each pixel value from 255.

A.2.2. Spatial and Temporal Operations. Now we present
the gadgets for spatial and temporal operations.

To mask a macroblock X with an overlay L, we ad-
ditionally require a binary matrix B, where each bit bi,j
indicates if the pixel xi,j is replaced with the corresponding

Gadget 17: F∆inv(X)

1 Parse (XY,XCb,XCr) := X
2 for i ∈ [0, 16), j ∈ [0, 16) do
3 xYi,j := 255− xYi,j
4 for i ∈ [0, 8), j ∈ [0, 8) do
5 xCbi,j := 255− xCbi,j
6 xCri,j := 255− xCri,j
7 return X ′ := (XY,XCb,XCr)

li,j . With (B,L) as the masking parameter parammask, the
masking gadget F∆mask is given in Gadget 18. Note that
different macroblocks may have different parammask, which
allows for arbitrary overlays with dynamic content and
position (e.g., subtitles) without incurring additional costs.

Gadget 18: F∆mask(X, parammask = (B,L))

1 Parse (XY,XCb,XCr) := X
2 Parse (BY,BCb,BCr) := B
3 Parse (LY,LCb,LCr) := L
4 for i ∈ [0, 16), j ∈ [0, 16) do
5 xYi,j := bYi,j ? l

Y
i,j : x

Y
i,j

6 for i ∈ [0, 8), j ∈ [0, 8) do
7 xCbi,j := bCbi,j ? l

Cb
i,j : x

Cb
i,j

8 xCri,j := bCri,j ? l
Cr
i,j : x

Cr
i,j

9 return X ′ := (XY,XCb,XCr)

Cropping and cutting both work similarly to each other,
where the former removes data in the horizontal and vertical
directions, while the latter removes data in the temporal
direction. We unify both cases via the removal parameter
paramremove, which consists of a boolean value b that indi-
cates if the macroblocks needs to be removed. By specifying
b according to the operation type, we can support both oper-
ations with the same gadget F∆remove . For instance, cropping
requires b = 1 for macroblocks outside the cropped region,
while for cutting, all macroblocks in removed frames have
b = 1. The construction of F∆remove is shown in Gadget 19,
where ⊥ is a dummy macroblock. Although the process
seems straightforward, we omit an important detail in the
description: how to handle ⊥ is in fact non-trivial, and we
defer the discussion to Section 5.1.

Gadget 19: F∆remove(X, paramremove = b)

1 Parse (XY,XCb,XCr) := X
2 return X ′ := b ? (⊥,⊥,⊥) : (XY,XCb,XCr)

We also want to point out that while we require each
macroblock to have its own paramremove, we can avoid linear
communication complexity when transmitting the parame-
ters from the prover P to the verifier V . In fact, P can simply
send the dimensions of the original video and the offset of
the cropped or cut video with respect to the original one,
and V can recover the parameters from these values.

A.2.3. More Complicated Operations. We discuss how
to build gadgets for more complex editing operations that
involve multiple macroblocks, such as rotation. While F∆

handles macroblocks one-by-one in our design, it still allows
such advanced functionalities. To this end, we leverage
vector commitment schemes [65] (e.g., Merkle trees), where
one can commit to the entire vector of messages and later
open the commitment to the message at a specific position.

Now, F∆ additionally takes as input the vector com-
mitment to the original video V . For an editing operation
that reads both the current macroblock Xi and another
macroblock Xj , the prover can feed Xj to F∆ as a hint,
and F∆ enforces that Xj is indeed the j-th macroblock in
the video by checking the vector commitment against Xj

and j. Similarly, we can also support operations that update
macroblocks in different positions by including the vector
commitment to the edited video V ′ as input. In this way,
F∆ is able to access other macroblocks in the video. without
affecting its macroblock-wise design.

Appendix B.
Security of Eva

We prove Theorem 1 and show that Eva is succinct,
complete, knowledge sound, and zero-knowledge.

Proof of succinctness. Eva satisfy succinctness because its
proofs are of constant size. Specifically, the LegoGro16
proof ϖ has 4 𝔾 elements and 1 𝔾̂ element, the partial
running instance 𝕌′

k has 3 𝔾 elements and 1 𝔽p element,
the partial incoming instance 𝕦′k has 2 𝔾 elements, T is in
𝔾, and r is in 𝔽p. In total, the proof π consists of 10 𝔾
elements, 1 𝔾̂ element, and 2 𝔽p elements.

Proof of completeness. We omit the proof of completeness
for Eva, as it is straightforward to see from the design of our
circuits and the completeness of IVC, NIFS, and ZKCP.

Proof of knowledge soundness. We prove the knowledge
soundness of Eva by constructing an efficient extractor Ext.
Given public parameters pkΠ, vkΠ, vkΣ, the trapdoor td,
and A’s output (ζ,meta, param, π), we have V(vkΠ, vkΣ,
ζ,meta, param, π) = 1 by condition. Hence, ZKCP.V(vk,
x, c, ϖ) = 1, for x := (vkΣ,meta, k, z0, ℏk, r,𝕦′k,𝕌′

k, T),
c := (𝕌𝔾

k+1). With this condition, Ext works as below:
1) Invoke ZKCP’s extractor on input x, c, ϖ. Except with

negligible probability, Ext can obtain υ := (𝕎k+1),
ω := (hk, σ,𝕌k.x,𝕌cf

k ,𝕎cf
k), such that (x, c) and (υ,

ω) satisfy FDeciderEva , and υ = 𝕎k+1 opens c = 𝕌𝔾
k+1.

2) Reconstruct 𝕌k from 𝕌′
k and 𝕌k.x.

3) Reconstruct 𝕦k from 𝕦′k and 𝕦k.x := (ϱ(𝕌k, k, z0, (hk,
ℏk)), ϱ(𝕌cf

k , k), ρ(𝕦k.Q)).
4) Line 4 of Circuit 7 enforces that 𝕌𝔽

k+1 := NIFS.V𝔽(vk,
𝕌𝔽

k,𝕦𝔽k, r). Also, we have 𝕌𝔾
k+1 := NIFS.V𝔾(vkΦ,𝕌𝔾

k ,

𝕦𝔾k , r, T). Thus, 𝕌k+1 := NIFS.V(vkΦ,𝕌k,𝕦k, T).
Moreover, Line 5 of Circuit 7 and the commit-and-
prove relation w.r.t. υ = 𝕎k+1 and c = 𝕌𝔾

k+1 imply
that 𝕎k+1 and 𝕌k+1 satisfy CSaug.

Consequently, except with negligible probability, Ext
can invoke the extractor of NIFS on input 𝕌k,𝕦k,
𝕎k+1, T and obtain 𝕎k,𝕨k such that (𝕌k,𝕎k) and
(𝕦k,𝕨k) satisfy CSaug.

5) By the checks in Line 6 of Circuit 7, we can deduce
that 𝕌cf

k and 𝕎cf
k satisfy CScf . At this point, Ext can

recover πk := ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k)) such
that all checks in IVC.V(vk, (k,z0, zk), πk) = 1 pass.
Consequently, except with negligible probability, Ext
can invoke the extractor of IVC on input Faug, k, z0,
zk, πk and obtain the state and proof at k − 1-th step.

6) Repeatedly invoke the extractor of IVC on the last state
and proof, and obtain the previous state and proof, until
reaching the initial step.

7) Parse the original video V from all the auxiliary states
(auxi) and return σ,V .

By the satisfiability of Faug, we can conclude that, with
param, (Zi) is the correct encoding of an video V ′ edited
from the original video V whose digest is hk. Also, by
construction of ZKCP.V , ζ is the entropy coded bitstream
of (Zi). Furthermore, by Line 1 of Circuit 7, σ is a valid
signature on H(hk,meta). Thus, Ext successfully extracts
V and σ such that RVA((ζ,meta, param, vkΣ), (σ,V)) = 1,
except with negligible probability.

Proof of zero-knowledge. For zero-knowledge, we leverage
the technique in [24, Appendix D] to construct a simulator
Sim who can produce 𝕌k,𝕦k that are indistinguishable from
the outputs of the honest prover, if ϱ and CM are hiding.

First, Sim uniformly samples random values r1, r2, rq,
rw, and initiates 𝕌1,𝕦1, where 𝕌1 = 𝕌⊥, 𝕦1.u = 1, 𝕦1.Q =
CM.C(ck, rq), 𝕦1.W = CM.C(ck, rw), 𝕦1.E = 0, 𝕦1.x =
(ϱ(r1), ϱ(r2), ρ(𝕦1.Q)). Here, 𝕌1, 𝕦1.u, and 𝕦1.E are equal
to real ones. Also, since we assume ϱ and CM are hiding,
𝕦1.Q, 𝕦i.W , and 𝕦1.x are indistinguishable from real ones.

Next, we show that for every i, if 𝕌i and 𝕦i are indistin-
guishable from real ones, then Sim can generate 𝕌i+1 and
𝕦i+1 that are also indistinguishable from real ones. To this
end, Sim uniformly samples randomness r1, r2, rq, rw, rt
and computes T := CM.C(ck, rt), which is indistinguishable
from real commitments since CM is hiding. Then, Sim
computes 𝕌i+1 := NIFS.V(vkΦ,𝕌i,𝕦i, T). Further, 𝕦i+1 is
derived in the same way as the base case. In this way, both
𝕌i+1 and 𝕦i+1 are indistinguishable from real instances.

After k steps, 𝕌k,𝕦k are indistinguishable from the hon-
estly generated ones. Again, Sim computes T := CM.C(ck,
rt) for a random rt and r := ρ(𝕌k,𝕦k, T), which are
indistinguishable from real ones.

Sim then computes ℏk by hashing the prediction mac-
roblocks and quantized coefficients decoded from ζ, and
derives 𝕌𝔾

k+1 := NIFS.V𝔾(vkΦ,𝕌𝔾
k ,𝕦𝔾k , r, T).

Finally, Sim invokes the ZKCP simulator on input x
and c, where x := (vkΣ,meta, k, z0, ℏk, r,𝕦′k,𝕌′

k, T), c :=
(𝕌𝔾

k+1). The ZKCP simulator returns a simulated proof ϖ
that is indistinguishable from the honestly generated ones,
and the proof π := (ϖ,𝕌′

k,𝕦′k, T , r) that Sim returns is
therefore also indistinguishable from the honest proofs.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper introduces Eva, a cryptographic scheme de-
signed for authenticating the provenance of lossily-encoded
and edited videos. Eva combines folding/accumulation-
based incremental verifiable computation with novel mech-
anisms for handling public intermediate data to scale up to
prove the correctness of edits and compression of the signed
video.

C.2. Scientific Contributions

• Provides a valuable step forward in an Established Field

C.3. Reasons for Acceptance

1) Eva is the first cryptographic framework for authenti-
cating the provenance of edited videos.

2) Eva develops and leverages novel insights about public
data in the encoder/decoder algorithms of lossy-video-
compression to reduce the size of circuits being proved.

3) Eva implements and evaluates their system on real-
world video clips, and demonstrates that this their
techniques are feasible (if not fully practical).

	Introduction
	Contribution
	Related Work
	Overview of Eva

	Preliminaries
	Proofs of Video Authenticity
	Data Types and Operations
	Algorithm and Security Definitions

	Improving Folding-Based IVC
	Paradigm 1: IVC with Lookup Arguments
	Paradigm 2: Commit-and-Prove Decider

	The Eva Protocol
	Building the Step Circuit
	Final Protocol
	Security

	Implementation and Evaluation
	Discussion
	References
	Appendix A: Encoding and Editing Gadgets
	Gadgets for Video Encoding
	Transform
	Quantization

	Gadgets for Video Editing
	Color Manipulations
	Spatial and Temporal Operations
	More Complicated Operations

	Appendix B: Security of Eva
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

